Visible to the public Biblio

Filters: Keyword is smartwatches  [Clear All Filters]
2020-02-17
Shang, Jiacheng, Wu, Jie.  2019.  A Usable Authentication System Using Wrist-Worn Photoplethysmography Sensors on Smartwatches. 2019 IEEE Conference on Communications and Network Security (CNS). :1–9.
Smartwatches are expected to become the world's best-selling electronic product after smartphones. Various smart-watches have been released to the private consumer market, but the data on smartwatches is not well protected. In this paper, we show for the first time that photoplethysmography (PPG)signals influenced by hand gestures can be used to authenticate users on smartwatches. The insight is that muscle and tendon movements caused by hand gestures compress the arterial geometry with different degrees, which has a significant impact on the blood flow. Based on this insight, novel approaches are proposed to detect the starting point and ending point of the hand gesture from raw PPG signals and determine if these PPG signals are from a normal user or an attacker. Different from existing solutions, our approach leverages the PPG sensors that are available on most smartwatches and does not need to collect training data from attackers. Also, our system can be used in more general scenarios wherever users can perform hand gestures and is robust against shoulder surfing attacks. We conduct various experiments to evaluate the performance of our system and show that our system achieves an average authentication accuracy of 96.31 % and an average true rejection rate of at least 91.64% against two types of attacks.
2017-03-08
Sarkisyan, A., Debbiny, R., Nahapetian, A..  2015.  WristSnoop: Smartphone PINs prediction using smartwatch motion sensors. 2015 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.

Smartwatches, with motion sensors, are becoming a common utility for users. With the increasing popularity of practical wearable computers, and in particular smartwatches, the security risks linked with sensors on board these devices have yet to be fully explored. Recent research literature has demonstrated the capability of using a smartphone's own accelerometer and gyroscope to infer tap locations; this paper expands on this work to demonstrate a method for inferring smartphone PINs through the analysis of smartwatch motion sensors. This study determines the feasibility and accuracy of inferring user keystrokes on a smartphone through a smartwatch worn by the user. Specifically, we show that with malware accessing only the smartwatch's motion sensors, it is possible to recognize user activity and specific numeric keypad entries. In a controlled scenario, we achieve results no less than 41% and up to 92% accurate for PIN prediction within 5 guesses.