Visible to the public Biblio

Filters: Keyword is touch sensitive screens  [Clear All Filters]
2020-02-17
Zhang, Lili, Han, Dianqi, Li, Ang, Li, Tao, Zhang, Yan, Zhang, Yanchao.  2019.  WristUnlock: Secure and Usable Smartphone Unlocking with Wrist Wearables. 2019 IEEE Conference on Communications and Network Security (CNS). :28–36.
We propose WristUnlock, a novel technique that uses a wrist wearable to unlock a smartphone in a secure and usable fashion. WristUnlock explores both the physical proximity and secure Bluetooth connection between the smartphone and wrist wearable. There are two modes in WristUnlock with different security and usability features. In the WristRaise mode, the user raises his smartphone in his natural way with the same arm carrying the wrist wearable; the smartphone gets unlocked if the acceleration data on the smartphone and wrist wearable satisfy an anticipated relationship specific to the user himself. In the WristTouch mode, the wrist wearable sends a random number to the smartphone through both the Bluetooth channel and a touch-based physical channel; the smartphone gets unlocked if the numbers received from both channels are equal. We thoroughly analyze the security of WristUnlock and confirm its high efficacy through detailed experiments.
2017-03-08
Antal, M., Szabó, L. Z..  2015.  An Evaluation of One-Class and Two-Class Classification Algorithms for Keystroke Dynamics Authentication on Mobile Devices. 2015 20th International Conference on Control Systems and Computer Science. :343–350.

In this paper we study keystroke dynamics as an authentication mechanism for touch screen based devices. The authentication process decides whether the identity of a given person is accepted or rejected. This can be easily implemented by using a two-class classifier which operates with the help of positive samples (belonging to the authentic person) and negative ones. However, collecting negative samples is not always a viable option. In such cases a one-class classification algorithm can be used to characterize the target class and distinguish it from the outliers. We implemented an authentication test-framework that is capable of working with both one-class and two-class classification algorithms. The framework was evaluated on our dataset containing keystroke samples from 42 users, collected from touch screen-based Android devices. Experimental results yield an Equal Error Rate (EER) of 3% (two-class) and 7% (one-class) respectively.