Visible to the public Biblio

Filters: Keyword is online Security  [Clear All Filters]
2020-09-21
K.R., Raghunandan, Aithal, Ganesh, Shetty, Surendra.  2019.  Comparative Analysis of Encryption and Decryption Techniques Using Mersenne Prime Numbers and Phony Modulus to Avoid Factorization Attack of RSA. 2019 International Conference on Advanced Mechatronic Systems (ICAMechS). :152–157.
In this advanced era, it is important to keep up an abnormal state of security for online exchanges. Public Key cryptography assumes an indispensable job in the field of security. Rivest, Shamir and Adleman (RSA) algorithm is being utilized for quite a long time to give online security. RSA is considered as one of the famous Public Key cryptographic algorithm. Nevertheless, a few fruitful assaults are created to break this algorithm because of specific confinements accepted in its derivation. The algorithm's security is principally founded on the issue of factoring large number. If the process factorization is done then, at that point the entire algorithm can end up fragile. This paper presents a methodology which is more secure than RSA algorithm by doing some modifications in it. Public Key exponent n, which is termed as common modulus replaced by phony modulus to avoid the factorization attack and it is constructed by Mersenne prime numbers to provide more efficiency and security. Paper presents a comparative analysis of the proposed algorithm with the conventional RSA algorithm and Dual RSA.
2017-03-20
Sharma, Seema, Ram, Babu.  2016.  Causes of Human Errors in Early Risk Assesment in Software Project Management. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :11:1–11:11.

This paper concerns the role of human errors in the field of Early Risk assessment in Software Project Management. Researchers have recently begun to focus on human errors in early risk assessment in large software projects; statistics show it to be major components of problems in software over 80% of economic losses are attributed to this problem. There has been comparatively diminutive experimental research on the role of human errors in this context, particularly evident at the organizational level, largely because of reluctance to share information and statistics on security issues in online software application. Grounded theory has been employed to investigate the main root of human errors in online security risks as a research methodology. An open-ended question was asked of 103 information security experts around the globe and the responses used to develop a list of human errors causes by open coding. The paper represents a contribution to our understanding of the causes of human errors in information security contexts. It is also one of the first information security research studies of the kind utilizing Strauss and Glaser's grounded theory approaches together, during data collection phases to achieve the required number of participants' responses and is a significant contribution to the field.

2017-03-17
Sharma, Seema, Ram, Babu.  2016.  Causes of Human Errors in Early Risk Assesment in Software Project Management. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :11:1–11:11.

This paper concerns the role of human errors in the field of Early Risk assessment in Software Project Management. Researchers have recently begun to focus on human errors in early risk assessment in large software projects; statistics show it to be major components of problems in software over 80% of economic losses are attributed to this problem. There has been comparatively diminutive experimental research on the role of human errors in this context, particularly evident at the organizational level, largely because of reluctance to share information and statistics on security issues in online software application. Grounded theory has been employed to investigate the main root of human errors in online security risks as a research methodology. An open-ended question was asked of 103 information security experts around the globe and the responses used to develop a list of human errors causes by open coding. The paper represents a contribution to our understanding of the causes of human errors in information security contexts. It is also one of the first information security research studies of the kind utilizing Strauss and Glaser's grounded theory approaches together, during data collection phases to achieve the required number of participants' responses and is a significant contribution to the field.