Visible to the public Biblio

Filters: Keyword is V2I  [Clear All Filters]
2018-10-26
Tiwari, V., Chaurasia, B. K..  2017.  Security issues in fog computing using vehicular cloud. 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC). :1–4.

In the near future, vehicular cloud will help to improve traffic safety and efficiency. Unfortunately, a computing of vehicular cloud and fog cloud faced a set of challenges in security, authentication, privacy, confidentiality and detection of misbehaving vehicles. In addition to, there is a need to recognize false messages from received messages in VANETs during moving on the road. In this work, the security issues and challenges for computing in the vehicular cloud over for computing is studied.

2018-06-20
Waraich, P. S., Batra, N..  2017.  Prevention of denial of service attack over vehicle ad hoc networks using quick response table. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). :586–591.

Secure routing over VANET is a major issue due to its high mobility environment. Due to dynamic topology, routes are frequently updated and also suffers from link breaks due to the obstacles i.e. buildings, tunnels and bridges etc. Frequent link breaks can cause packet drop and thus result in degradation of network performance. In case of VANETs, it becomes very difficult to identify the reason of the packet drop as it can also occur due to the presence of a security threat. VANET is a type of wireless adhoc network and suffer from common attacks which exist for mobile adhoc network (MANET) i.e. Denial of Services (DoS), Black hole, Gray hole and Sybil attack etc. Researchers have already developed various security mechanisms for secure routing over MANET but these solutions are not fully compatible with unique attributes of VANET i.e. vehicles can communicate with each other (V2V) as well as communication can be initiated with infrastructure based network (V2I). In order to secure the routing for both types of communication, there is need to develop a solution. In this paper, a method for secure routing is introduced which can identify as well as eliminate the existing security threat.

2017-11-03
Tangade, S., Manvi, S. S..  2016.  Scalable and privacy-preserving authentication protocol for secure vehicular communications. 2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–6.

Most of the existing authentication protocols are based on either asymmetric cryptography like public-key infrastructure (PKI) or symmetric cryptography. The PKI-based authentication protocols are strongly recommended for solving security issues in VANETs. However, they have following shortcomings: (1) lengthy certificates lead to transmission and computation overheads, and (2) lack of privacy-preservation due to revealing of vehicle identity, communicated in broadcasting safety-message. Symmetric cryptography based protocols are faster because of a single secret key and simplicity; however, it does not ensure non-repudiation. In this paper, we present an Efficient, Scalable and Privacy-preserving Authentication (ESPA) protocol for secure vehicular ad hoc networks (VANETs). The protocol employs hybrid cryptography. In ESPA, the asymmetric PKI based pre-authentication and the symmetric hash message authentication code (HMAC) based authentication are adopted during vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communications, respectively. Extensive simulations are conducted to validate proposed ESPA protocol and compared with the existing work based on PKI and HMAC. The performance analysis showed that ESPA is more efficient, scalable and privacy-preserving secured protocol than the existing work.

2017-03-20
LeBlanc, Heath J., Hassan, Firas, Gomez, Edgar, Alsbou, Nesreen.  2016.  Inter-vehicle Communication Assisted Localization with Resilience to False Data Injection Attacks. Proceedings of the First ACM International Workshop on Smart, Autonomous, and Connected Vehicular Systems and Services. :64–65.

Vehicle localization is important in many applications of vehicular networks. The Global Positioning System (GPS) has been critical for vehicle localization. However, the case where the GPS is spoofed through a false data injection attack can be lead to devastating consequences, especially in localization solutions that make use of cooperation among multiple vehicles. Hence, resilient localization algorithms are needed that can achieve a baseline of performance in the case of a false data injection attack. This poster presents preliminary results of an inter-vehicle communication assisted localization algorithm that is resilient to false data injection attacks for the vehicles not directly attacked. The algorithm makes use of V2V and V2I communication – along with on-board GPS receiver, odometer, and compass – to achieve precise localization results.