Biblio
Several applications adopt electromagnetic sensors, that base their principle on the presence of magnets realized with specific magnetic materials that show a rather high remanence, but low coercivity. This work concerns the production, analysis and characterization of hybrid composite materials, with the use of metal powders, which aim to reach those specific properties. In order to obtain the best coercivity and remanence characteristics various "recipes" have been used with different percentages of soft and hard magnetic materials, bonded together by a plastic binder. The goal was to find out the interdependence between the magnetic powder composition and the characteristics of the final material. Soft magnetic material (special Fe powder) has been used to obtain a low coercivity value, while hard materials were primarily used for maintaining a good induction remanence; by increasing the soft proportion a higher magnetic permeability has been also obtained. All the selected materials have been characterized and then tested; in order to verify the validity of the proposed materials two practical tests have been performed. Special magnets have been realized for a comparison with original ones (AlNiCo and ferrite) for two experimental cases: the first is consisting in an encoder realized through a toothed wheel, the second regards the special system used for the electric guitars.
With the application and promotion of electric vehicles, vehicle security problems caused by actuator reliability have become increasingly prominent. Firstly, the paper analyses and sums motor failure modes and their effects of permanent magnet synchronous motor (PMSM) , which is commonly used on electric vehicles. And then design a hierarchical structure of the vehicle control strategies and the corresponding algorithms, and adjust based on the different failure modes. Finally conduct simulation conditions in CarSim environment. Verify the control strategy and algorithm can maintain vehicle stability and reduce the burden on driver under motor failure conditions.