Visible to the public Biblio

Filters: Keyword is representation  [Clear All Filters]
2021-10-04
Xu, Yuanchen, Yang, Yingjie, He, Ying.  2020.  A Representation of Business Oriented Cyber Threat Intelligence and the Objects Assembly. 2020 10th International Conference on Information Science and Technology (ICIST). :105–113.
Cyber threat intelligence (CTI) is an effective approach to improving cyber security of businesses. CTI provides information of business contexts affected by cyber threats and the corresponding countermeasures. If businesses can identify relevant CTI, they can take defensive actions before the threats, described in the relevant CTI, take place. However, businesses still lack knowledge to help identify relevant CTI. Furthermore, information in real-world systems is usually vague, imprecise, inconsistent and incomplete. This paper defines a business object that is a business context surrounded by CTI. A business object models the connection knowledge for CTI onto the business. To assemble the business objects, this paper proposes a novel representation of business oriented CTI and a system used for constructing and extracting the business objects. Generalised grey numbers, fuzzy sets and rough sets are used for the representation, and set approximations are used for the extraction of the business objects. We develop a prototype of the system and use a case study to demonstrate how the system works. We then conclude the paper together with the future research directions.
2017-03-20
Kang, Eunsuk, Milicevic, Aleksandar, Jackson, Daniel.  2016.  Multi-representational Security Analysis. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :181–192.

Security attacks often exploit flaws that are not anticipated in an abstract design, but are introduced inadvertently when high-level interactions in the design are mapped to low-level behaviors in the supporting platform. This paper proposes a multi-representational approach to security analysis, where models capturing distinct (but possibly overlapping) views of a system are automatically composed in order to enable an end-to-end analysis. This approach allows the designer to incrementally explore the impact of design decisions on security, and discover attacks that span multiple layers of the system. This paper describes Poirot, a prototype implementation of the approach, and reports on our experience on applying Poirot to detect previously unknown security flaws in publicly deployed systems.