Visible to the public Biblio

Filters: Keyword is volterra series  [Clear All Filters]
2023-04-28
Liu, Cen, Luo, Laiwei, Wang, Jun, Zhang, Chao, Pan, Changyong.  2022.  A New Digital Predistortion Based On B spline Function With Compressive Sampling Pruning. 2022 International Wireless Communications and Mobile Computing (IWCMC). :1200–1205.
A power amplifier(PA) is inherently nonlinear device and is used in a communication system widely. Due to the nonlinearity of PA, the communication system is hard to work well. Digital predistortion (DPD) is the way to solve this problem. Using Volterra function to fit the PA is what most DPD solutions do. However, when it comes to wideband signal, there is a deduction on the performance of the Volterra function. In this paper, we replace the Volterra function with B-spline function which performs better on fitting PA at wideband signal. And the other benefit is that the orthogonality of coding matrix A could be improved, enhancing the stability of computation. Additionally, we use compressive sampling to reduce the complexity of the function model.
ISSN: 2376-6506
2017-03-27
Batselier, Kim, Chen, Zhongming, Liu, Haotian, Wong, Ngai.  2016.  A Tensor-based Volterra Series Black-box Nonlinear System Identification and Simulation Framework. Proceedings of the 35th International Conference on Computer-Aided Design. :17:1–17:7.

Tensors are a multi-linear generalization of matrices to their d-way counterparts, and are receiving intense interest recently due to their natural representation of high-dimensional data and the availability of fast tensor decomposition algorithms. Given the input-output data of a nonlinear system/circuit, this paper presents a nonlinear model identification and simulation framework built on top of Volterra series and its seamless integration with tensor arithmetic. By exploiting partially-symmetric polyadic decompositions of sparse Toeplitz tensors, the proposed framework permits a pleasantly scalable way to incorporate high-order Volterra kernels. Such an approach largely eludes the curse of dimensionality and allows computationally fast modeling and simulation beyond weakly nonlinear systems. The black-box nature of the model also hides structural information of the system/circuit and encapsulates it in terms of compact tensors. Numerical examples are given to verify the efficacy, efficiency and generality of this tensor-based modeling and simulation framework.