Visible to the public Biblio

Filters: Keyword is program transformation  [Clear All Filters]
2022-03-14
Soares, Luigi, Pereira, Fernando Magno Quintãn.  2021.  Memory-Safe Elimination of Side Channels. 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). :200—210.
A program is said to be isochronous if its running time does not depend on classified information. The programming languages literature contains much work that transforms programs to ensure isochronicity. The current state-of-the-art approach is a code transformation technique due to Wu et al., published in 2018. That technique has an important virtue: it ensures that the transformed program runs exactly the same set of operations, regardless of inputs. However, in this paper we demonstrate that it has also a shortcoming: it might add out-of-bounds memory accesses into programs that were originally memory sound. From this observation, we show how to deliver the same runtime guarantees that Wu et al. provide, in a memory-safe way. In addition to being safer, our LLVM-based implementation is more efficient than its original inspiration, achieving shorter repairing times, and producing code that is smaller and faster.
2019-02-14
Peng, H., Shoshitaishvili, Y., Payer, M..  2018.  T-Fuzz: Fuzzing by Program Transformation. 2018 IEEE Symposium on Security and Privacy (SP). :697-710.

Fuzzing is a simple yet effective approach to discover software bugs utilizing randomly generated inputs. However, it is limited by coverage and cannot find bugs hidden in deep execution paths of the program because the randomly generated inputs fail complex sanity checks, e.g., checks on magic values, checksums, or hashes. To improve coverage, existing approaches rely on imprecise heuristics or complex input mutation techniques (e.g., symbolic execution or taint analysis) to bypass sanity checks. Our novel method tackles coverage from a different angle: by removing sanity checks in the target program. T-Fuzz leverages a coverage-guided fuzzer to generate inputs. Whenever the fuzzer can no longer trigger new code paths, a light-weight, dynamic tracing based technique detects the input checks that the fuzzer-generated inputs fail. These checks are then removed from the target program. Fuzzing then continues on the transformed program, allowing the code protected by the removed checks to be triggered and potential bugs discovered. Fuzzing transformed programs to find bugs poses two challenges: (1) removal of checks leads to over-approximation and false positives, and (2) even for true bugs, the crashing input on the transformed program may not trigger the bug in the original program. As an auxiliary post-processing step, T-Fuzz leverages a symbolic execution-based approach to filter out false positives and reproduce true bugs in the original program. By transforming the program as well as mutating the input, T-Fuzz covers more code and finds more true bugs than any existing technique. We have evaluated T-Fuzz on the DARPA Cyber Grand Challenge dataset, LAVA-M dataset and 4 real-world programs (pngfix, tiffinfo, magick and pdftohtml). For the CGC dataset, T-Fuzz finds bugs in 166 binaries, Driller in 121, and AFL in 105. In addition, found 3 new bugs in previously-fuzzed programs and libraries.

2018-05-24
Dotzler, Georg, Kamp, Marius, Kreutzer, Patrick, Philippsen, Michael.  2017.  More Accurate Recommendations for Method-Level Changes. Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. :798–808.

During the life span of large software projects, developers often apply the same code changes to different code locations in slight variations. Since the application of these changes to all locations is time-consuming and error-prone, tools exist that learn change patterns from input examples, search for possible pattern applications, and generate corresponding recommendations. In many cases, the generated recommendations are syntactically or semantically wrong due to code movements in the input examples. Thus, they are of low accuracy and developers cannot directly copy them into their projects without adjustments. We present the Accurate REcommendation System (ARES) that achieves a higher accuracy than other tools because its algorithms take care of code movements when creating patterns and recommendations. On average, the recommendations by ARES have an accuracy of 96% with respect to code changes that developers have manually performed in commits of source code archives. At the same time ARES achieves precision and recall values that are on par with other tools.

2017-12-12
Sun, F., Zhang, P., White, J., Schmidt, D., Staples, J., Krause, L..  2017.  A Feasibility Study of Autonomically Detecting In-Process Cyber-Attacks. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF). :1–8.

A cyber-attack detection system issues alerts when an attacker attempts to coerce a trusted software application to perform unsafe actions on the attacker's behalf. One way of issuing such alerts is to create an application-agnostic cyber- attack detection system that responds to prevalent software vulnerabilities. The creation of such an autonomic alert system, however, is impeded by the disparity between implementation language, function, quality-of-service (QoS) requirements, and architectural patterns present in applications, all of which contribute to the rapidly changing threat landscape presented by modern heterogeneous software systems. This paper evaluates the feasibility of creating an autonomic cyber-attack detection system and applying it to several exemplar web-based applications using program transformation and machine learning techniques. Specifically, we examine whether it is possible to detect cyber-attacks (1) online, i.e., as they occur using lightweight structures derived from a call graph and (2) offline, i.e., using machine learning techniques trained with features extracted from a trace of application execution. In both cases, we first characterize normal application behavior using supervised training with the test suites created for an application as part of the software development process. We then intentionally perturb our test applications so they are vulnerable to common attack vectors and then evaluate the effectiveness of various feature extraction and learning strategies on the perturbed applications. Our results show that both lightweight on-line models based on control flow of execution path and application specific off-line models can successfully and efficiently detect in-process cyber-attacks against web applications.

2017-03-29
Al-Sibahi, Ahmad Salim, Dimovski, Aleksandar S., Wąsowski, Andrzej.  2016.  Symbolic Execution of High-level Transformations. Proceedings of the 2016 ACM SIGPLAN International Conference on Software Language Engineering. :207–220.

Transformations form an important part of developing domain specific languages, where they are used to provide semantics for typing and evaluation. Yet, few solutions exist for verifying transformations written in expressive high-level transformation languages. We take a step towards that goal, by developing a general symbolic execution technique that handles programs written in these high-level transformation languages. We use logical constraints to describe structured symbolic values, including containment, acyclicity, simple unordered collections (sets) and to handle deep type-based querying of syntax hierarchies. We evaluate this symbolic execution technique on a collection of refactoring and model transformation programs, showing that the white-box test generation tool based on symbolic execution obtains better code coverage than a black box test generator for such programs in almost all tested cases.