Visible to the public Biblio

Filters: Keyword is language models  [Clear All Filters]
2020-07-10
Koloveas, Paris, Chantzios, Thanasis, Tryfonopoulos, Christos, Skiadopoulos, Spiros.  2019.  A Crawler Architecture for Harvesting the Clear, Social, and Dark Web for IoT-Related Cyber-Threat Intelligence. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:3—8.

The clear, social, and dark web have lately been identified as rich sources of valuable cyber-security information that -given the appropriate tools and methods-may be identified, crawled and subsequently leveraged to actionable cyber-threat intelligence. In this work, we focus on the information gathering task, and present a novel crawling architecture for transparently harvesting data from security websites in the clear web, security forums in the social web, and hacker forums/marketplaces in the dark web. The proposed architecture adopts a two-phase approach to data harvesting. Initially a machine learning-based crawler is used to direct the harvesting towards websites of interest, while in the second phase state-of-the-art statistical language modelling techniques are used to represent the harvested information in a latent low-dimensional feature space and rank it based on its potential relevance to the task at hand. The proposed architecture is realised using exclusively open-source tools, and a preliminary evaluation with crowdsourced results demonstrates its effectiveness.

2018-01-10
Zheng, Y., Shi, Y., Guo, K., Li, W., Zhu, L..  2017.  Enhanced word embedding with multiple prototypes. 2017 4th International Conference on Industrial Economics System and Industrial Security Engineering (IEIS). :1–5.

Word representation is one of the basic word repressentation methods in natural language processing, which mapped a word into a dense real-valued vector space based on a hypothesis: words with similar context have similar meanings. Models like NNLM, C&W, CBOW, Skip-gram have been designed for word embeddings learning, and get widely used in many NLP tasks. However, these models assume that one word had only one semantics meaning which is contrary to the real language rules. In this paper we pro-pose a new word unit with multiple meanings and an algorithm to distinguish them by it's context. This new unit can be embedded in most language models and get series of efficient representations by learning variable embeddings. We evaluate a new model MCBOW that integrate CBOW with our word unit on word similarity evaluation task and some downstream experiments, the result indicated our new model can learn different meanings of a word and get a better result on some other tasks.

2017-03-29
White, Martin, Tufano, Michele, Vendome, Christopher, Poshyvanyk, Denys.  2016.  Deep Learning Code Fragments for Code Clone Detection. Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. :87–98.

Code clone detection is an important problem for software maintenance and evolution. Many approaches consider either structure or identifiers, but none of the existing detection techniques model both sources of information. These techniques also depend on generic, handcrafted features to represent code fragments. We introduce learning-based detection techniques where everything for representing terms and fragments in source code is mined from the repository. Our code analysis supports a framework, which relies on deep learning, for automatically linking patterns mined at the lexical level with patterns mined at the syntactic level. We evaluated our novel learning-based approach for code clone detection with respect to feasibility from the point of view of software maintainers. We sampled and manually evaluated 398 file- and 480 method-level pairs across eight real-world Java systems; 93% of the file- and method-level samples were evaluated to be true positives. Among the true positives, we found pairs mapping to all four clone types. We compared our approach to a traditional structure-oriented technique and found that our learning-based approach detected clones that were either undetected or suboptimally reported by the prominent tool Deckard. Our results affirm that our learning-based approach is suitable for clone detection and a tenable technique for researchers.