Biblio
Privacy preservation is a challenging task with the huge amount of data that are available in social media. The data those are stored in the distributed environment or in cloud environment need to ensure confidentiality to data. In addition, representing the voluminous data is graph will be convenient to perform keyword search. The proposed work initially reads the data corresponding to social media and converts that into a graph. In order to prevent the data from the active attacks Advanced Encryption Standard algorithm is used to perform graph encryption. Later, search operation is done using two algorithms: kNK keyword search algorithm and top k nearest keyword search algorithm. The first scheme is used to fetch all the data corresponding to the keyword. The second scheme is used to fetch the nearest neighbor. This scheme increases the efficiency of the search process. Here shortest path algorithm is used to find the minimum distance. Now, based on the minimum value the results are produced. The proposed algorithm shows high performance for graph generation and searching and moderate performance for graph encryption.
Security within the IoT is currently below par. Common security issues include IoT device vendors not following security best practices and/or omitting crucial security controls and features within their devices, lack of defined and mandated IoT security standards, default IoT device configurations, missing secure update mechanisms to rectify security flaws discovered in IoT devices and the overall unintended consequence of complexity - the attack surface of networks comprising IoT devices can increase exponentially with the addition of each new device. In this paper we set out an approach using graphs and graph databases to understand IoT network complexity and the impact that different devices and their profiles have on the overall security of the underlying network and its associated data.
In this work, we introduce a new Markov operator associated with a digraph, which we refer to as a nonlinear Laplacian. Unlike previous Laplacians for digraphs, the nonlinear Laplacian does not rely on the stationary distribution of the random walk process and is well defined on digraphs that are not strongly connected. We show that the nonlinear Laplacian has nontrivial eigenvalues and give a Cheeger-like inequality, which relates the conductance of a digraph and the smallest non-zero eigenvalue of its nonlinear Laplacian. Finally, we apply the nonlinear Laplacian to the analysis of real-world networks and obtain encouraging results.
The wide presence of large graph data and the increasing popularity of storing data in the cloud drive the needs for graph query processing on a remote cloud. But a fundamental challenge is to process user queries without compromising sensitive information. This work focuses on privacy preserving subgraph matching in a cloud server. The goal is to minimize the overhead on both cloud and client sides for subgraph matching, without compromising users' sensitive information. To that end, we transform an original graph \$G\$ into a privacy preserving graph Gk, which meets the requirement of an existing privacy model known as k-automorphism. By making use of the symmetry in a k-automorphic graph, a subgraph matching query can be efficiently answered using a graph Go, a small subset of Gk. This approach saves both space and query cost in the cloud server. We also anonymize the query graphs to protect their label information using label generalization technique. To reduce the search space for a subgraph matching query, we propose a cost model to select the more effective label combinations. The effectiveness and efficiency of our method are demonstrated through extensive experimental results on real datasets.
In recent years, prodigious explosion of social network services may trigger new business models. However, it has negative aspects such as personal information spill or spamming, as well. Amongst conventional spam detection approaches, the studies which are based on vertex degrees or Local Clustering Coefficient have been caused false positive results so that normal vertices can be specified as spammers. In this paper, we propose a novel approach by employing the circuit structure in the social networks, which demonstrates the advantages of our work through the experiment.
Most cyber network attacks begin with an adversary gaining a foothold within the network and proceed with lateral movement until a desired goal is achieved. The mechanism by which lateral movement occurs varies but the basic signature of hopping between hosts by exploiting vulnerabilities is the same. Because of the nature of the vulnerabilities typically exploited, lateral movement is very difficult to detect and defend against. In this paper we define a dynamic reachability graph model of the network to discover possible paths that an adversary could take using different vulnerabilities, and how those paths evolve over time. We use this reachability graph to develop dynamic machine-level and network-level impact scores. Lateral movement mitigation strategies which make use of our impact scores are also discussed, and we detail an example using a freely available data set.