Visible to the public Biblio

Filters: Keyword is clean slate architectures  [Clear All Filters]
2021-03-16
Freitas, M. Silva, Oliveira, R., Molinos, D., Melo, J., Rosa, P. Frosi, Silva, F. de Oliveira.  2020.  ConForm: In-band Control Plane Formation Protocol to SDN-Based Networks. 2020 International Conference on Information Networking (ICOIN). :574—579.

Although OpenFlow-based SDN networks make it easier to design and test new protocols, when you think of clean slate architectures, their use is quite limited because the parameterization of its flows resides primarily in TCP/IP protocols. Besides, despite the many benefits that SDN offers, some aspects have not yet been adequately addressed, such as management plane activities, network startup, and options for connecting the data plane to the control plane. Based on these issues and limitations, this work presents a bootstrap protocol for SDN-based networks, which allows, beyond the network topology discovery, automatic configuration of an inband control plane. The protocol is designed to act only on layer two, in an autonomous, distributed and deterministic way, with low overhead and has the intent to be the basement for the implementation of other management plane related activities. A formal specification of the protocol is provided. In addition, an analytical model was created to preview the number of required messages to establish the control plane. According to this model, the proposed protocol presents less overhead than similar de-facto protocols used to topology discovery in SDN networks.

2017-04-20
Nikolenko, S. I., Kogan, K., Rétvári, G., Bérczi-Kovács, E. R., Shalimov, A..  2016.  How to represent IPv6 forwarding tables on IPv4 or MPLS dataplanes. 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :521–526.

The Internet routing ecosystem is facing substantial scalability challenges on the data plane. Various “clean slate” architectures for representing forwarding tables (FIBs), such as IPv6, introduce additional constraints on efficient implementations from both lookup time and memory footprint perspectives due to significant classification width. In this work, we propose an abstraction layer able to represent IPv6 FIBs on existing IP and even MPLS infrastructure. Feasibility of the proposed representations is confirmed by an extensive simulation study on real IPv6 forwarding tables, including low-level experimental performance evaluation.