Biblio
In this paper, we propose a robust Nash strategy for a class of uncertain Markov jump delay stochastic systems (UMJDSSs) via static output feedback (SOF). After establishing the extended bounded real lemma for UMJDSS, the conditions for the existence of a robust Nash strategy set are determined by means of cross coupled stochastic matrix inequalities (CCSMIs). In order to solve the SOF problem, an heuristic algorithm is developed based on the algebraic equations and the linear matrix inequalities (LMIs). In particular, it is shown that robust convergence is guaranteed under a new convergence condition. Finally, a practical numerical example based on the congestion control for active queue management is provided to demonstrate the reliability and usefulness of the proposed design scheme.
We provide an exact solution to two performance problems—one of disturbance attenuation and one of windowed variance minimization—subject to exponential stability. Considered are switched systems, whose parameters come from a finite set and switch according to a language such as that specified by an automaton. The controllers are path-dependent, having finite memory of past plant parameters and finite foreknowledge of future parameters. Exact, convex synthesis conditions for each performance problem are expressed in terms of nested linear matrix inequalities. The resulting semidefinite programming problem may be solved offline to arrive at a suitable controller. A notion of path-by-path performance is introduced for each performance problem, leading to improved system performance. Non-regular switching languages are considered and the results are extended to these languages. Two simple, physically motivated examples are given to demonstrate the application of these results.
This paper deals with the robust H∞ cyber-attacks estimation problem for control systems under stochastic cyber-attacks and disturbances. The focus is on designing a H∞ filter which maximize the attack sensitivity and minimize the effect of disturbances. The design requires not only the disturbance attenuation, but also the residual to remain the attack sensitivity as much as possible while the effect of disturbance is minimized. A stochastic model of control system with stochastic cyber-attacks which satisfy the Markovian stochastic process is constructed. And we also present the stochastic attack models that a control system is possibly exposed to. Furthermore, applying H∞ filtering technique-based on linear matrix inequalities (LMIs), the paper obtains sufficient conditions that ensure the filtering error dynamic is asymptotically stable and satisfies a prescribed ratio between cyber-attack sensitivity and disturbance sensitivity. Finally, the results are applied to the control of a Quadruple-tank process (QTP) under a stochastic cyber-attack and a stochastic disturbance. The simulation results underline that the designed filters is effective and feasible in practical application.