Visible to the public Biblio

Filters: Keyword is computation power  [Clear All Filters]
2020-02-17
Marchang, Jims, Ibbotson, Gregg, Wheway, Paul.  2019.  Will Blockchain Technology Become a Reality in Sensor Networks? 2019 Wireless Days (WD). :1–4.
The need for sensors to deliver, communicate, collect, alert, and share information in various applications has made wireless sensor networks very popular. However, due to its limited resources in terms of computation power, battery life and memory storage of the sensor nodes, it is challenging to add security features to provide the confidentiality, integrity, and availability. Blockchain technology ensures security and avoids the need of any trusted third party. However, applying Blockchain in a resource-constrained wireless sensor network is a challenging task because Blockchain is power, computation, and memory hungry in nature and demands heavy bandwidth due to control overheads. In this paper, a new routing and a private communication Blockchain framework is designed and tested with Constant Bit rate (CBR). The proposed Load Balancing Multi-Hop (LBMH) routing shares and enhances the battery life of the Cluster Heads and reduce control overhead during Block updates, but due to limited storage and energy of the sensor nodes, Blockchain in sensor networks may never become a reality unless computation, storage and battery life are readily available at low cost.
2018-01-16
Richardson, D. P., Lin, A. C., Pecarina, J. M..  2017.  Hosting distributed databases on internet of things-scale devices. 2017 IEEE Conference on Dependable and Secure Computing. :352–357.

The Internet of Things (IoT) era envisions billions of interconnected devices capable of providing new interactions between the physical and digital worlds, offering new range of content and services. At the fundamental level, IoT nodes are physical devices that exist in the real world, consisting of networking, sensor, and processing components. Some application examples include mobile and pervasive computing or sensor nets, and require distributed device deployment that feed information into databases for exploitation. While the data can be centralized, there are advantages, such as system resiliency and security to adopting a decentralized architecture that pushes the computation and storage to the network edge and onto IoT devices. However, these devices tend to be much more limited in computation power than traditional racked servers. This research explores using the Cassandra distributed database on IoT-representative device specifications. Experiments conducted on both virtual machines and Raspberry Pi's to simulate IoT devices, examined latency issues with network compression, processing workloads, and various memory and node configurations in laboratory settings. We demonstrate that distributed databases are feasible on Raspberry Pi's as IoT representative devices and show findings that may help in application design.

2017-04-20
Dofe, J., Frey, J., Yu, Q..  2016.  Hardware security assurance in emerging IoT applications. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). :2050–2053.
The Internet of Things (IoT) offers a more advanced service than a single device or an isolated system, as IoT connects diverse components, such as sensors, actuators, and embedded devices through the internet. As predicted by Cisco, there will be 50 billion IoT connected devices by 2020. Integration of such a tremendous number of devices into IoT potentially brings in a new concern, system security. In this work, we review two typical hardware attacks that can harm the emerging IoT applications. As IoT devices typically have limited computation power and need to be energy efficient, sophisticated cryptographic algorithms and authentication protocols are not suitable for every IoT device. To simultaneously thwart hardware Trojan and side-channel analysis attacks, we propose a low-cost dynamic permutation method for IoT devices. Experimental results show that the proposed method achieves 5.8X higher accumulated partial guessing entropy than the baseline, thus strengthening the IoT processing unit against hardware attacks.