Biblio
The Internet of Things (IoT) holds great potential for productivity, quality control, supply chain efficiencies and overall business operations. However, with this broader connectivity, new vulnerabilities and attack vectors are being introduced, increasing opportunities for systems to be compromised by hackers and targeted attacks. These vulnerabilities pose severe threats to a myriad of IoT applications within areas such as manufacturing, healthcare, power and energy grids, transportation and commercial building management. While embedded OEMs offer technologies, such as hardware Trusted Platform Module (TPM), that deploy strong chain-of-trust and authentication mechanisms, still they struggle to protect against vulnerabilities introduced by vendors and end users, as well as additional threats posed by potential technical vulnerabilities and zero-day attacks. This paper proposes a pro-active policy-based approach, enforcing the principle of least privilege, through hardware Security Policy Engine (SPE) that actively monitors communication of applications and system resources on the system communication bus (ARM AMBA-AXI4). Upon detecting a policy violation, for example, a malicious application accessing protected storage, it counteracts with predefined mitigations to limit the attack. The proposed SPE approach widely complements existing embedded hardware and software security technologies, targeting the mitigation of risks imposed by unknown vulnerabilities of embedded applications and protocols.
Cloud computing is a revolution in IT technology that provides scalable, virtualized on-demand resources to the end users with greater flexibility, less maintenance and reduced infrastructure cost. These resources are supervised by different management organizations and provided over Internet using known networking protocols, standards and formats. The underlying technologies and legacy protocols contain bugs and vulnerabilities that can open doors for intrusion by the attackers. Attacks as DDoS (Distributed Denial of Service) are ones of the most frequent that inflict serious damage and affect the cloud performance. In a DDoS attack, the attacker usually uses innocent compromised computers (called zombies) by taking advantages of known or unknown bugs and vulnerabilities to send a large number of packets from these already-captured zombies to a server. This may occupy a major portion of network bandwidth of the victim cloud infrastructures or consume much of the servers time. Thus, in this work, we designed a DDoS detection system based on the C.4.5 algorithm to mitigate the DDoS threat. This algorithm, coupled with signature detection techniques, generates a decision tree to perform automatic, effective detection of signatures attacks for DDoS flooding attacks. To validate our system, we selected other machine learning techniques and compared the obtained results.
Distributed Denial of Service attacks against high-profile targets have become more frequent in recent years. In response to such massive attacks, several architectures have adopted proxies to introduce layers of indirection between end users and target services and reduce the impact of a DDoS attack by migrating users to new proxies and shuffling clients across proxies so as to isolate malicious clients. However, the reactive nature of these solutions presents weaknesses that we leveraged to develop a new attack - the proxy harvesting attack - which enables malicious clients to collect information about a large number of proxies before launching a DDoS attack. We show that current solutions are vulnerable to this attack, and propose a moving target defense technique consisting in periodically and proactively replacing one or more proxies and remapping clients to proxies. Our primary goal is to disrupt the attacker's reconnaissance effort. Additionally, to mitigate ongoing attacks, we propose a new client-to-proxy assignment strategy to isolate compromised clients, thereby reducing the impact of attacks. We validate our approach both theoretically and through simulation, and show that the proposed solution can effectively limit the number of proxies an attacker can discover and isolate malicious clients.