Visible to the public Biblio

Filters: Keyword is game design  [Clear All Filters]
2021-03-01
Kerim, A., Genc, B..  2020.  Mobile Games Success and Failure: Mining the Hidden Factors. 2020 7th International Conference on Soft Computing Machine Intelligence (ISCMI). :167–171.
Predicting the success of a mobile game is a prime issue in game industry. Thousands of games are being released each day. However, a few of them succeed while the majority fail. Towards the goal of investigating the potential correlation between the success of a mobile game and its specific attributes, this work was conducted. More than 17 thousands games were considered for that reason. We show that specific game attributes, such as number of IAPs (In-App Purchases), belonging to the puzzle genre, supporting different languages and being produced by a mature developer highly and positively affect the success of the game in the future. Moreover, we show that releasing the game in July and not including any IAPs seems to be highly associated with the game’s failure. Our second main contribution, is the proposal of a novel success score metric that reflects multiple objectives, in contrast to evaluating only revenue, average rating or rating count. We also employ different machine learning models, namely, SVM (Support Vector Machine), RF (Random Forest) and Deep Learning (DL) to predict this success score metric of a mobile game given its attributes. The trained models were able to predict this score, as well as the rating average and rating count of a mobile game with more than 70% accuracy. This prediction can help developers before releasing their game to the market to avoid any potential disappointments.
2018-12-10
Zhu, J., Liapis, A., Risi, S., Bidarra, R., Youngblood, G. M..  2018.  Explainable AI for Designers: A Human-Centered Perspective on Mixed-Initiative Co-Creation. 2018 IEEE Conference on Computational Intelligence and Games (CIG). :1–8.

Growing interest in eXplainable Artificial Intelligence (XAI) aims to make AI and machine learning more understandable to human users. However, most existing work focuses on new algorithms, and not on usability, practical interpretability and efficacy on real users. In this vision paper, we propose a new research area of eXplainable AI for Designers (XAID), specifically for game designers. By focusing on a specific user group, their needs and tasks, we propose a human-centered approach for facilitating game designers to co-create with AI/ML techniques through XAID. We illustrate our initial XAID framework through three use cases, which require an understanding both of the innate properties of the AI techniques and users' needs, and we identify key open challenges.

2017-04-20
Clarke, Daniel, McGregor, Graham, Rubin, Brianna, Stanford, Jonathan, Graham, T.C. Nicholas.  2016.  Arcaid: Addressing Situation Awareness and Simulator Sickness in a Virtual Reality Pac-Man Game. Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts. :39–45.

This paper describes the challenges of converting the classic Pac-Man arcade game into a virtual reality game. Arcaid provides players with the tools to maintain sufficient situation awareness in an environment where, unlike the classic game, they do not have full view of the game state. We also illustrate methods that can be used to reduce a player's simulation sickness by providing visual focal points for players and designing user interface elements that do not disrupt immersion.