Biblio
"Good Governance" - may it be corporate or governmental, is a badly needed focus area in the world today where the companies and governments are struggling to survive the political and economical turmoil around the globe. All governments around the world have a tendency of expanding the size of their government, but eventually they would be forced to think reducing the size by incorporating information technology as a way to provide services to the citizens effectively and efficiently. Hence our attempt is to offer a complete solution from birth of a citizen till death encompassing all the necessary services related to the well being of a person living in a society. Our research and analysis would explore the pros and cons of using IT as a solution to our problems and ways to implement them for a best outcome in e-Governance occasionally comparing with the present scenario when relevant.
Cloud computing denotes an IT infrastructure where data and software are stored and processed remotely in a data center of a cloud provider, which are accessible via an Internet service. This new paradigm is increasingly reaching the ears of companies and has revolutionized the marketplace of today owing to several factors, in particular its cost-effective architectures covering transmission, storage and intensive data computing. However, like any new technology, the cloud computing technology brings new problems of security, which represents the main restrain on turning to this paradigm. For this reason, users are reluctant to resort to the cloud because of security and protection of private data as well as lack of trust in cloud service providers. The work in this paper allows the readers to familiarize themselves with the field of security in the cloud computing paradigm while suggesting our contribution in this context. The security schema we propose allowing a distant user to ensure a completely secure migration of all their data anywhere in the cloud through DNA cryptography. Carried out experiments showed that our security solution outperforms its competitors in terms of integrity and confidentiality of data.
Maliciously-injected power load, a.k.a. power attack, has recently surfaced as a new egregious attack vector for dangerously compromising the data center availability. This paper focuses on the emerging threat of power attacks in a multi-tenant colocation data center, an important type of data center where multiple tenants house their own servers and share the power distribution system. Concretely, we discover a novel physical side channel –- a voltage side channel –- which leaks the benign tenants' power usage information at runtime and helps an attacker precisely time its power attacks. The key idea we exploit is that, due to the Ohm's Law, the high-frequency switching operation (40\textasciitilde100kHz) of the power factor correction circuit universally built in today's server power supply units creates voltage ripples in the data center power lines. Importantly, without overlapping the grid voltage in the frequency domain, the voltage ripple signals can be easily sensed by the attacker to track the benign tenants' runtime power usage and precisely time its power attacks. We evaluate the timing accuracy of the voltage side channel in a real data center prototype, demonstrating that the attacker can extract benign tenants' power pattern with a great accuracy (correlation coefficient = 0.90+) and utilize 64% of all the attack opportunities without launching attacks randomly or consecutively. Finally, we highlight a few possible defense strategies and extend our study to more complex three-phase power distribution systems used in large multi-tenant data centers.
The performance, dependability, and security of cloud service systems are vital for the ongoing operation, control, and support. Thus, controlled improvement in service requires a comprehensive analysis and systematic identification of the fundamental underlying constituents of cloud using a rigorous discipline. In this paper, we introduce a framework which helps identifying areas for potential cloud service enhancements. A cloud service cannot be completed if there is a failure in any of its underlying resources. In addition, resources are kept offline for scheduled maintenance. We use redundant resources to mitigate the impact of failures/maintenance for ensuring performance and dependability; which helps enhancing security as well. For example, at least 4 replicas are required to defend the intrusion of a single instance or a single malicious attack/fault as defined by Byzantine Fault Tolerance (BFT). Data centers with high performance, dependability, and security are outsourced to the cloud computing environment with greater flexibility of cost of owing the computing infrastructure. In this paper, we analyze the effectiveness of redundant resource usage in terms of dependability metric and cost of service deployment based on the priority of service requests. The trade-off among dependability, cost, and security under different redundancy schemes are characterized through the comprehensive analytical models.
Industrial networking has many issues based on the type of industries, data storage, data centers, and cloud computing, etc. Green data storage improves the scientific, commercial and industrial profile of the networking. Future industries are looking for cybersecurity solution with the low-cost resources in which the energy serving is the main problem in the industrial networking. To improve these problems, green data storage will be the priority because data centers and cloud computing deals with the data storage. In this analysis, we have decided to use solar energy source and different light rays as methodologies include a prism and the Li-Fi techniques. In this approach, light rays sent through the prism which allows us to transmit the data with different frequencies. This approach provides green energy and maximum protection within the data center. As a result, we have illustrated that cloud services within the green data center in industrial networking will achieve better protection with the low-cost energy through this analysis. Finally, we have to conclude that Li-Fi enhances the use of green energy and protection which are advantages to current and future industrial networking.
TCP congestion control has been known for its crucial role in stabilizing the Internet and preventing congestion collapses. However, with the rapid advancement in networking technologies, resulting in the emergence of challenging network environments such as data center networks (DCNs), the traditional TCP algorithm leads to several impairments. The shortcomings of TCP when deployed in DCNs have motivated the development of multiple new variants, including DCTCP, ICTCP, IA-TCP, and D2TCP, but all of these algorithms exhibit their advantages at the cost of a number of drawbacks in the Global Internet. Motivated by the belief that new innovations need to be established on top of a solid foundation with a thorough understanding of the existing, well-established algorithms, we have been working towards a comprehensive analysis of various conventional TCP algorithms in DCNs and other modern networks. This paper presents our first milestone towards the completion of our comparative study in which we present the results obtained by simulating multiple TCP variants: NewReno, Vegas, HighSpeed, Scalable, Westwood+, BIC, CUBIC, and YeAH using a fat tree architecture. Each protocol is evaluated in terms of queue length, number of dropped packets, average packet delay, and aggregate bandwidth as a percentage of the channel bandwidth.
Multimedia has been exponentially increasing as the biggest big data, which consist of video clips, images, and audio files. Processing and analyzing them on a cloud data center have become a preferred solution that can utilize the large pool of cloud resources to address the problems caused by the tremendous amount of unstructured multimedia data. However, there exist many challenges in processing multimedia big data on a cloud data center, such as multimedia data representation approach, an efficient networking model, and an estimation method for traffic patterns. The primary purpose of this article is to develop a novel tensor-based software-defined networking model on a cloud data center for multimedia big-data computation and communication. First, an overview of the proposed framework is provided, in which the functions of the representative modules are briefly illustrated. Then, three models,—forwarding tensor, control tensor, and transition tensor—are proposed for management of networking devices and prediction of network traffic patterns. Finally, two algorithms about single-mode and multimode tensor eigen-decomposition are developed, and the incremental method is employed for efficiently updating the generated eigen-vector and eigen-tensor. Experimental results reveal that the proposed framework is feasible and efficient to handle multimedia big data on a cloud data center.