Biblio
Live migration is the process used in virtualization environment of datacenters in order to take the benefit of zero downtime during system maintenance. But during migrating live virtual machines along with system files and storage data, network traffic gets increases across network bandwidth and delays in migration time. There is need to reduce the migration time in order to maintain the system performance by analyzing and optimizing the storage overheads which mainly creates due to unnecessary duplicated data transferred during live migration. So there is need of such storage device which will keep the duplicated data residing in both the source as well as target physical host i.e. NAS. The proposed hash map based algorithm maps all I/O operations in order to track the duplicated data by assigning hash value to both NAS and RAM data. Only the unique data then will be sent data to the target host without affecting service level agreement (SLA), without affecting VM migration time, application downtime, SLA violations, VM pre-migration and downtime post migration overheads during pre and post migration of virtual machines.
Live migration is one of the key technologies to improve data center utilization, power efficiency, and maintenance. Various live migration algorithms have been proposed; each exhibiting distinct characteristics in terms of completion time, amount of data transferred, virtual machine (VM) downtime, and VM performance degradation. To make matters worse, not only the migration algorithm but also the applications running inside the migrated VM affect the different performance metrics. With service-level agreements and operational constraints in place, choosing the optimal live migration technique has so far been an open question. In this work, we propose an adaptive machine learning-based model that is able to predict with high accuracy the key characteristics of live migration in dependence of the migration algorithm and the workload running inside the VM. We discuss the important input parameters for accurately modeling the target metrics, and describe how to profile them with little overhead. Compared to existing work, we are not only able to model all commonly used migration algorithms but also predict important metrics that have not been considered so far such as the performance degradation of the VM. In a comparison with the state-of-the-art, we show that the proposed model outperforms existing work by a factor 2 to 5.
In this paper, we present AnomalyDetect, an approach for detecting anomalies in cloud services. A cloud service consists of a set of interacting applications/processes running on one or more interconnected virtual machines. AnomalyDetect uses the Kalman Filter as the basis for predicting the states of virtual machines running cloud services. It uses the cloud service's virtual machine historical data to forecast potential anomalies. AnomalyDetect has been integrated with the AutoMigrate framework and serves as the means for detecting anomalies to automatically trigger live migration of cloud services to preserve their availability. AutoMigrate is a framework for developing intelligent systems that can monitor and migrate cloud services to maximize their availability in case of cloud disruption. We conducted a number of experiments to analyze the performance of the proposed AnomalyDetect approach. The experimental results highlight the feasibility of AnomalyDetect as an approach to autonomic cloud availability.
Virtual machine live migration technology, as an important support for cloud computing, has become a central issue in recent years. The virtual machines' runtime environment is migrated from the original physical server to another physical server, maintaining the virtual machines running at the same time. Therefore, it can make load balancing among servers and ensure the quality of service. However, virtual machine migration security issue cannot be ignored due to the immature development of it. This paper we analyze the security threats of the virtual machine migration, and compare the current proposed protection measures. While, these methods either rely on hardware, or lack adequate security and expansibility. In the end, we propose a security model of live virtual machine migration based on security policy transfer and encryption, named as SPLM (Security Protection of Live Migration) and analyze its security and reliability, which proves that SPLM is better than others. This paper can be useful for the researchers to work on this field. The security study of live virtual machine migration in this paper provides a certain reference for the research of virtualization security, and is of great significance.