Biblio
It is a well-known fact that the use of Cloud Computing is becoming very common all over the world for data storage and analysis. But the proliferation of the threats in cloud is also their; threats like Information breaches, Data thrashing, Cloud account or Service traffic hijacking, Insecure APIs, Denial of Service, Malicious Insiders, Abuse of Cloud services, Insufficient due Diligence and Shared Technology Vulnerable. This paper tries to come up with the solution for the threat (Denial of Service) in cloud. We attempt to give our newly proposed model by the hybridization of Genetic algorithm and extension of Diffie Hellman algorithm and tries to make cloud transmission secure from upcoming intruders.
Attacks on cloud-computing services are becoming more prevalent with recent victims including Tesla, Aviva Insurance and SIM-card manufacturer Gemalto[1]. The risk posed to organisations from malicious insiders is becoming more widely known about and consequently many are now investing in hardware, software and new processes to try to detect these attacks. As for all types of attack vector, there will always be those which are not known about and those which are known about but remain exceptionally difficult to detect - particularly in a timely manner. We believe that insider attacks are of particular concern in a cloud-computing environment, and that cloud-service providers should enhance their ability to detect them by means of indirect detection. We propose a combined attack-tree and kill-chain based method for identifying multiple indirect detection measures. Specifically, the use of attack trees enables us to encapsulate all detection opportunities for insider attacks in cloud-service environments. Overlaying the attack tree on top of a kill chain in turn facilitates indirect detection opportunities higher-up the tree as well as allowing the provider to determine how far an attack has progressed once suspicious activity is detected. We demonstrate the method through consideration of a specific type of insider attack - that of attempting to capture virtual machines in transit within a cloud cluster via use of a network tap, however, the process discussed here applies equally to all cloud paradigms.
Cloud Storage Service(CSS) provides unbounded, robust file storage capability and facilitates for pay-per-use and collaborative work to end users. But due to security issues like lack of confidentiality, malicious insiders, it has not gained wide spread acceptance to store sensitive information. Researchers have proposed proxy re-encryption schemes for secure data sharing through cloud. Due to advancement of computing technologies and advent of quantum computing algorithms, security of existing schemes can be compromised within seconds. Hence there is a need for designing security schemes which can be quantum computing resistant. In this paper, a secure file sharing scheme through cloud storage using proxy re-encryption technique has been proposed. The proposed scheme is proven to be chosen ciphertext secure(CCA) under hardness of ring-LWE, Search problem using random oracle model. The proposed scheme outperforms the existing CCA secure schemes in-terms of re-encryption time and decryption time for encrypted files which results in an efficient file sharing scheme through cloud storage.
With the evolution of network threat, identifying threat from internal is getting more and more difficult. To detect malicious insiders, we move forward a step and propose a novel attribute classification insider threat detection method based on long short term memory recurrent neural networks (LSTM-RNNs). To achieve high detection rate, event aggregator, feature extractor, several attribute classifiers and anomaly calculator are seamlessly integrated into an end-to-end detection framework. Using the CERT insider threat dataset v6.2 and threat detection recall as our performance metric, experimental results validate that the proposed threat detection method greatly outperforms k-Nearest Neighbor, Isolation Forest, Support Vector Machine and Principal Component Analysis based threat detection methods.
Existing access control mechanisms are based on the concept of identity enrolment and recognition and assume that recognized identity is a synonym to ethical actions, yet statistics over the years show that the most severe security breaches are the results of trusted, identified, and legitimate users who turned into malicious insiders. Insider threat damages vary from intellectual property loss and fraud to information technology sabotage. As insider threat incidents evolve, there exist demands for a nonidentity-based authentication measure that rejects access to authorized individuals who have mal-intents of access. In this paper, we study the possibility of using the user's intention as an access control measure using the involuntary electroencephalogram reactions toward visual stimuli. We propose intent-based access control (IBAC) that detects the intentions of access based on the existence of knowledge about an intention. IBAC takes advantage of the robustness of the concealed information test to assess access risk. We use the intent and intent motivation level to compute the access risk. Based on the calculated risk and risk accepted threshold, the system makes the decision whether to grant or deny access requests. We assessed the model using experiments on 30 participants that proved the robustness of the proposed solution.
Insider threats remain a significant problem within organizations, especially as industries that rely on technology continue to grow. Traditionally, research has been focused on the malicious insider; someone that intentionally seeks to perform a malicious act against the organization that trusts him or her. While this research is important, more commonly organizations are the victims of non-malicious insiders. These are trusted employees that are not seeking to cause harm to their employer; rather, they misuse systems-either intentional or unintentionally-that results in some harm to the organization. In this paper, we look at both by developing and validating instruments to measure the behavior and circumstances of a malicious insider versus a non-malicious insider. We found that in many respects their psychological profiles are very similar. The results are also consistent with other research on the malicious insider from a personality standpoint. We expand this and also find that trait negative affect, both its higher order dimension and the lower order dimensions, are highly correlated with insider threat behavior and circumstances. This paper makes four significant contributions: 1) Development and validation of survey instruments designed to measure the insider threat; 2) Comparison of the malicious insider with the non-malicious insider; 3) Inclusion of trait affect as part of the psychological profile of an insider; 4) Inclusion of a measure for financial well-being, and 5) The successful use of survey research to examine the insider threat problem.