Visible to the public Biblio

Filters: Keyword is Wormhole  [Clear All Filters]
2022-04-13
Abdiyeva-Aliyeva, Gunay, Hematyar, Mehran, Bakan, Sefa.  2021.  Development of System for Detection and Prevention of Cyber Attacks Using Artifıcial Intelligence Methods. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1—5.
Artificial intelligence (AI) technologies have given the cyber security industry a huge leverage with the possibility of having significantly autonomous models that can detect and prevent cyberattacks – even though there still exist some degree of human interventions. AI technologies have been utilized in gathering data which can then be processed into information that are valuable in the prevention of cyberattacks. These AI-based cybersecurity frameworks have commendable scalability about them and are able to detect malicious activities within the cyberspace in a prompter and more efficient manner than conventional security architectures. However, our one or two completed studies did not provide a complete and clear analyses to apply different machine learning algorithms on different media systems. Because of the existing methods of attack and the dynamic nature of malware or other unwanted software (adware etc.) it is important to automatically and systematically create, update and approve malicious packages that can be available to the public. Some of Complex tests have shown that DNN performs maybe can better than conventional machine learning classification. Finally, we present a multiple, large and hybrid DNN torrent structure called Scale-Hybrid-IDS-AlertNet, which can be used to effectively monitor to detect and review the impact of network traffic and host-level events to warn directly or indirectly about cyber-attacks. Besides this, they are also highly adaptable and flexible, with commensurate efficiency and accuracy when it comes to the detection and prevention of cyberattacks.There has been a multiplicity of AI-based cyber security architectures in recent years, and each of these has been found to show varying degree of effectiveness. Deep Neural Networks, which tend to be more complex and even more efficient, have been the major focus of research studies in recent times. In light of the foregoing, the objective of this paper is to discuss the use of AI methods in fighting cyberattacks like malware and DDoS attacks, with attention on DNN-based models.
2022-02-08
Alsafwani, Nadher, Ali, Musab A. M., Tahir, Nooritawati Md.  2021.  Evaluation of the Mobile Ad Hoc Network (MANET) for Wormhole Attacks using Qualnet Simulator. 2021 IEEE 11th International Conference on System Engineering and Technology (ICSET). :46–49.
Security is the key concern, which allows safe communication between any two mobile nodes in an unfavorable environment. Wireless Ad Hoc can be unsecured against attacks by means of malicious nodes. Hence this study assesses the influence of wormhole attacks on Mobile Ad Hoc network (MANET) system that is evaluated and validated based on the QualNet simulator. The MANET performance is investigated utilizing the wormhole attacks. The simulation is performed on Mobile node's network layer and data link layer in the WANET (wireless Ad Hoc network). The MANET performance was examined using “what-if” analyses too. Results showed that for security purposes, it is indeed necessary to assess the Mobile Ad Hoc node deployment.
2020-06-01
Nandhini, P.S., Mehtre, B.M..  2019.  Intrusion Detection System Based RPL Attack Detection Techniques and Countermeasures in IoT: A Comparison. 2019 International Conference on Communication and Electronics Systems (ICCES). :666—672.

Routing Protocol for Low power and Lossy Network (RPL) is a light weight routing protocol designed for LLN (Low Power Lossy Networks). It is a source routing protocol. Due to constrained nature of resources in LLN, RPL is exposed to various attacks such as blackhole attack, wormhole attack, rank attack, version attack, etc. IDS (Intrusion Detection System) is one of the countermeasures for detection and prevention of attacks for RPL based loT. Traditional IDS techniques are not suitable for LLN due to certain characteristics like different protocol stack, standards and constrained resources. In this paper, we have presented various IDS research contribution for RPL based routing attacks. We have also classified the proposed IDS in the literature, according to the detection techniques. Therefore, this comparison will be an eye-opening stuff for future research in mitigating routing attacks for RPL based IoT.

2019-03-11
Mehta, R., Parmar, M. M..  2018.  Trust based mechanism for Securing IoT Routing Protocol RPL against Wormhole amp;Grayhole Attacks. 2018 3rd International Conference for Convergence in Technology (I2CT). :1–6.
Internet of Things is attracting a lot of interest in the modern world and has become a part of daily life leading to a large scale of distribution of Low power and Lossy Networks (LLN). For such networks constrained by low power and storage, IETF has proposed RPL an open standard routing protocol. However RPL protocol is exposed to a number of attacks which may degrade the performance and resources of the network leading to incorrect output. In this paper, to address Wormhole and Grayhole attack we propose a light weight Trust based mechanism. The proposed method uses direct trust which is computed based on node properties and Indirect Trust which is based on opinion of the neighboring nodes. The proposed method is energy friendly and does not impose excessive overhead on network traffic.
2018-05-09
Dridi, M., Rubini, S., Lallali, M., Florez, M. J. S., Singhoff, F., Diguet, J. P..  2017.  DAS: An Efficient NoC Router for Mixed-Criticality Real-Time Systems. 2017 IEEE International Conference on Computer Design (ICCD). :229–232.

Mixed-Criticality Systems (MCS) are real-time systems characterized by two or more distinct levels of criticality. In MCS, it is imperative that high-critical flows meet their deadlines while low critical flows can tolerate some delays. Sharing resources between flows in Network-On-Chip (NoC) can lead to different unpredictable latencies and subsequently complicate the implementation of MCS in many-core architectures. This paper proposes a new virtual channel router designed for MCS deployed over NoCs. The first objective of this router is to reduce the worst-case communication latency of high-critical flows. The second aim is to improve the network use rate and reduce the communication latency for low-critical flows. The proposed router, called DAS (Double Arbiter and Switching router), jointly uses Wormhole and Store And Forward techniques for low and high-critical flows respectively. Simulations with a cycle-accurate SystemC NoC simulator show that, with a 15% network use rate, the communication delay of high-critical flows is reduced by 80% while communication delay of low-critical flow is increased by 18% compared to usual solutions based on routers with multiple virtual channels.

2017-08-02
Jangir, Sunil Kumar, Hemrajani, Naveen.  2016.  Evaluation of Black Hole, Wormhole and Sybil Attacks in Mobile Ad-hoc Networks. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :74:1–74:6.

A mobile ad hoc network (MANET) is an infrastructure-less network of various mobile devices and generally known for its self configuring behavior. MANET can communicate over relatively bandwidth constrained wireless links. Due to limited bandwidth battery power and dynamic network, topology routing in MANET is a challenging issue. Collaborative attacks are particularly serious issues in MANET. Attacks are liable to occur if routing algorithms fail to detect prone threats and to find as well as remove malicious nodes. Our objective is to examine and improve the performance of network diminished by variety of attacks. The performance of MANET network is examined under Black hole, Wormhole and Sybil attacks using Performance matrices and then major issues which are related to these attacks are addressed.

2017-05-18
Schweitzer, Nadav, Stulman, Ariel, Shabtai, Asaf.  2016.  Neighbor Contamination to Achieve Complete Bottleneck Control. Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. :247–253.

Black-holes, gray-holes and, wormholes, are devastating to the correct operation of any network. These attacks (among others) are based on the premise that packets will travel through compromised nodes, and methods exist to coax routing into these traps. Detection of these attacks are mainly centered around finding the subversion in action. In networks, bottleneck nodes -- those that sit on many potential routes between sender and receiver -- are an optimal location for compromise. Finding naturally occurring path bottlenecks, however, does not entitle network subversion, and as such are more difficult to detect. The dynamic nature of mobile ad-hoc networks (manets) causes ubiquitous routing algorithms to be even more susceptible to this class of attacks. Finding perceived bottlenecks in an olsr based manet, is able to capture between 50%-75% of data. In this paper we propose a method of subtly expanding perceived bottlenecks into complete bottlenecks, raising capture rate up to 99%; albeit, at high cost. We further tune the method to reduce cost, and measure the corresponding capture rate.