Biblio
Blum-Blum-Shub (BBS) is a less complex pseudorandom number generator (PRNG) that requires very large modulus and a squaring operation for the generation of each bit, which makes it computationally heavy and slow. On the other hand, the concept of elliptic curve (EC) point operations has been extended to PRNGs that prove to have good randomness properties and reduced latency, but exhibit dependence on the secrecy of point P. Given these pros and cons, this paper proposes a new BBS-ECPRNG approach such that the modulus is the product of two elliptic curve points, both primes of length, and the number of bits extracted per iteration is by binary fraction. We evaluate the algorithm performance by generating 1000 distinct sequences of 106bits each. The results were analyzed based on the overall performance of the sequences using the NIST standard statistical test suite. The average performance of the sequences was observed to be above the minimum confidence level of 99.7 percent and successfully passed all the statistical properties of randomness tests.
The paper considers the general structure of Pseudo-random binary sequence generator based on the numerical solution of chaotic differential equations. The proposed generator architecture divides the generation process in two stages: numerical simulation of the chaotic system and converting the resulting sequence to a binary form. The new method of calculation of normalization factor is applied to the conversion of state variables values to the binary sequence. Numerical solution of chaotic ODEs is implemented using semi-implicit symmetric composition D-method. Experimental study considers Thomas and Rössler attractors as test chaotic systems. Properties verification for the output sequences of generators is carried out using correlation analysis methods and NIST statistical test suite. It is shown that output sequences of investigated generators have statistical and correlation characteristics that are specific for the random sequences. The obtained results can be used in cryptography applications as well as in secure communication systems design.
The Internet of Things (IoT) is a design implementation of embedded system design that connects a variety of devices, sensors, and physical objects to a larger connected network (e.g. the Internet) which requires human-to-human or human-to-computer interaction. While the IoT is expected to expand the user's connectivity and everyday convenience, there are serious security considerations that come into account when using the IoT for distributed authentication. Furthermore the incorporation of biometrics to IoT design brings about concerns of cost and implementing a 'user-friendly' design. In this paper, we focus on the use of electrocardiogram (ECG) signals to implement distributed biometrics authentication within an IoT system model. Our observations show that ECG biometrics are highly reliable, more secure, and easier to implement than other biometrics.