Visible to the public Biblio

Filters: Keyword is offloading  [Clear All Filters]
2020-10-30
Jeong, Yeonjeong, Kim, Jinmee, Jeon, Seunghyub, Cha, Seung-Jun, Ramneek, Jung, Sungin.  2019.  Design and Implementation of Azalea unikernel file IO offload. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :398—401.

{Unikernel is smaller in size than existing operating systems and can be started and shut down much more quickly and safely, resulting in greater flexibility and security. Since unikernel does not include large modules like the file system in its library to reduce its size, it is common to choose offloading to handle file IO. However, the processing of IO offload of unikernel transfers the file IO command to the proxy of the file server and copies the file IO result of the proxy. This can result in a trade-off of rapid processing, an advantage of unikernel. In this paper, we propose a method to offload file IO and to perform file IO with direct copy from file server to unikernel}.

2018-06-11
Silva, B., Sabino, A., Junior, W., Oliveira, E., Júnior, F., Dias, K..  2017.  Performance Evaluation of Cryptography on Middleware-Based Computational Offloading. 2017 VII Brazilian Symposium on Computing Systems Engineering (SBESC). :205–210.
Mobile cloud computing paradigm enables cloud servers to extend the limited hardware resources of mobile devices improving availability and reliability of the services provided. Consequently, private, financial, business and critical data pass through wireless access media exposed to malicious attacks. Mobile cloud infrastructure requires new security mechanisms, at the same time as offloading operations need to maintain the advantages of saving processing and energy of the device. Thus, this paper implements a middleware-based computational offloading with cryptographic algorithms and evaluates two mechanisms (symmetric and asymmetric), to provide the integrity and authenticity of data that a smartphone offloads to mobile cloud servers. Also, the paper discusses the factors that impact on power consumption and performance on smartphones that's run resource-intensive applications.
2017-05-30
Gomes, Francisco A.A., Viana, Windson, Rocha, Lincoln S., Trinta, Fernando.  2016.  A Contextual Data Offloading Service With Privacy Support. Proceedings of the 22Nd Brazilian Symposium on Multimedia and the Web. :23–30.

Mobile devices, such as smarthphones, became a common tool in our daily routine. Mobile Applications (a.k.a. apps) are demanding access to contextual information increasingly. For instance, apps require user's environment data as well as their profiles in order to adapt themselves (interfaces, services, content) according to this context data. Mobile apps with this behavior are known as context-aware applications (CAS). Several software infrastructures have been created to help the development of CAS. However, most of them do not store the contextual data, once mobile devices are resource constrained. They are not built taking into account the privacy of contextual data either, due the fact that apps may expose contextual data, without user consent. This paper addresses these topics by extending an existing middleware platform that help the development of mobile context-aware applications. Our extension aims at store and process the contextual data generated from several mobile devices, using the computational power of the cloud, and the definition of privacy policies, which avoid dissemination of unauthorized contextual data.

2017-05-18
Dey, Swarnava, Mukherjee, Arijit.  2016.  Robotic SLAM: A Review from Fog Computing and Mobile Edge Computing Perspective. Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services. :153–158.

Offloading computationally expensive Simultaneous Localization and Mapping (SLAM) task for mobile robots have attracted significant attention during the last few years. Lack of powerful on-board compute capability in these energy constrained mobile robots and rapid advancement in compute cloud access technologies laid the foundation for development of several Cloud Robotics platforms that enabled parallel execution of computationally expensive robotic algorithms, especially involving multiple robots. In this work the Cloud Robotics concept is extended to include the current emphasis of computing at the network edge nodes along with the Cloud. The requirements and advantages of using edge nodes for computation offloading over remote cloud or local robot clusters are discussed with reference to the ETSI 'Mobile-Edge Computing' initiative and OpenFog Consortium's 'OpenFog Architecture'. A Particle Filter algorithm for SLAM is modified and implemented for offloading in a multi-tier edge+cloud setup. Additionally a model is proposed for offloading decision in such a setup with experiments and results demonstrating the efficacy of the proposed dynamic offloading scheme over static offloading strategies.