Biblio
Industrial Internet-of-Things has been touted as the next revolution in the industrial domain, offering interconnectivity, independence, real-time operation, and self-optimization. Integration of smart systems, however, bridges the gap between information and operation technology, creating new avenues for attacks from the cyber domain. The dismantling of this air-gap, in conjunction with the devices' long lifespan -in the range of 20-30 years-, motivates us to bring the attention of the community to emerging advanced persistent threats. We demonstrate a threat that bridges the air-gap by leaking data from memory to analog peripherals through Direct Memory Access (DMA), delivered as a firmware modification through the supply chain. The attack automatically adapts to a target device by leveraging the Device Tree and resides solely in the peripherals, completely transparent to the main CPU, by judiciously short-circuiting specific components. We implement this attack on a commercial Programmable Logic Controller, leaking information over the available LEDs. We evaluate the presented attack vector in terms of stealthiness, and demonstrate no observable overhead on both CPU performance and DMA transfer speed. Since traditional anomaly detection techniques would fail to detect this firmware trojan, this work highlights the need for industrial control system-appropriate techniques that can be applied promptly to installed devices.
The Internet of Things (IoT) is slowly, but steadily, changing the way we interact with our surrounding. Smart cities, smart environments, smart buildings are just a few macroscopic examples of how smart ecosystems are increasingly involved in our daily life, each one offering a different set of information. This information's decentralization and scattering can be exploited, optimizing mobile nodes on-demand information retrieval process. We propose an approach focused on defining competence domains in smart systems where the responsibility of providing a specific information to a mobile node is defined by spatial constraints. By exploiting the interplay and duality of Cloud Computing and Fog Computing we introduce an approach to exploit data spatial allocation in smart systems to optimize mobile nodes information retrieval.