Biblio
Control room video surveillance is an important source of information for ensuring public safety. To facilitate the process, a Decision-Support System (DSS) designed for the security task force is vital and necessary to take decisions rapidly using a sea of information. In case of mission critical operation, Situational Awareness (SA) which consists of knowing what is going on around you at any given time plays a crucial role across a variety of industries and should be placed at the center of our DSS. In our approach, SA system will take advantage of the human factor thanks to the reinforcement signal whereas previous work on this field focus on improving knowledge level of DSS at first and then, uses the human factor only for decision-making. In this paper, we propose a situational awareness-centric decision-support system framework for mission-critical operations driven by Quality of Experience (QoE). Our idea is inspired by the reinforcement learning feedback process which updates the environment understanding of our DSS. The feedback is injected by a QoE built on user perception. Our approach will allow our DSS to evolve according to the context with an up-to-date SA.
Tracking and maintaining satisfactory QoE for video streaming services is becoming a greater challenge for mobile network operators than ever before. Downloading and watching video content on mobile devices is currently a growing trend among users, that is causing a demand for higher bandwidth and better provisioning throughout the network infrastructure. At the same time, popular demand for privacy has led many online streaming services to adopt end-to-end encryption, leaving providers with only a handful of indicators for identifying QoE issues. In order to address these challenges, we propose a novel methodology for detecting video streaming QoE issues from encrypted traffic. We develop predictive models for detecting different levels of QoE degradation that is caused by three key influence factors, i.e. stalling, the average video quality and the quality variations. The models are then evaluated on the production network of a large scale mobile operator, where we show that despite encryption our methodology is able to accurately detect QoE problems with 72\textbackslash%-92\textbackslash% accuracy, while even higher performance is achieved when dealing with cleartext traffic