Visible to the public Biblio

Filters: Keyword is untrusted device  [Clear All Filters]
2020-08-17
De Oliveira Nunes, Ivan, Dessouky, Ghada, Ibrahim, Ahmad, Rattanavipanon, Norrathep, Sadeghi, Ahmad-Reza, Tsudik, Gene.  2019.  Towards Systematic Design of Collective Remote Attestation Protocols. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1188–1198.
Networks of and embedded (IoT) devices are becoming increasingly popular, particularly, in settings such as smart homes, factories and vehicles. These networks can include numerous (potentially diverse) devices that collectively perform certain tasks. In order to guarantee overall safety and privacy, especially in the face of remote exploits, software integrity of each device must be continuously assured. This can be achieved by Remote Attestation (RA) - a security service for reporting current software state of a remote and untrusted device. While RA of a single device is well understood, collective RA of large numbers of networked embedded devices poses new research challenges. In particular, unlike single-device RA, collective RA has not benefited from any systematic treatment. Thus, unsurprisingly, prior collective RA schemes are designed in an ad hoc fashion. Our work takes the first step toward systematic design of collective RA, in order to help place collective RA onto a solid ground and serve as a set of design guidelines for both researchers and practitioners. We explore the design space for collective RA and show how the notions of security and effectiveness can be formally defined according to a given application domain. We then present and evaluate a concrete collective RA scheme systematically designed to satisfy these goals.
2017-05-18
Miller, Carl A., Shi, Yaoyun.  2016.  Robust Protocols for Securely Expanding Randomness and Distributing Keys Using Untrusted Quantum Devices. J. ACM. 63:33:1–33:63.

Randomness is a vital resource for modern-day information processing, especially for cryptography. A wide range of applications critically rely on abundant, high-quality random numbers generated securely. Here, we show how to expand a random seed at an exponential rate without trusting the underlying quantum devices. Our approach is secure against the most general adversaries, and has the following new features: cryptographic level of security, tolerating a constant level of imprecision in devices, requiring only unit size quantum memory (for each device component) in an honest implementation, and allowing a large natural class of constructions for the protocol. In conjunction with a recent work by Chung et al. [2014], it also leads to robust unbounded expansion using just 2 multipart devices. When adapted for distributing cryptographic keys, our method achieves, for the first time, exponential expansion combined with cryptographic security and noise tolerance. The proof proceeds by showing that the Rényi divergence of the outputs of the protocol (for a specific bounding operator) decreases linearly as the protocol iterates. At the heart of the proof are a new uncertainty principle on quantum measurements and a method for simulating trusted measurements with untrusted devices.