Biblio
BootJacker is a proof-of-concept attack tool which demonstrates that authentication mechanisms employed by an operating system can be bypassed by obtaining physical access and simply forcing a restart. The key insight that enables this attack is that the contents of memory on some machines are fully preserved across a warm boot. Upon a reboot, BootJacker uses this residual memory state to revive the original host operating system environment and run malicious payloads. Using BootJacker, an attacker can break into a locked user session and gain access to open encrypted disks, web browser sessions or other secure network connections. BootJacker's non-persistent design makes it possible for an attacker to leave no traces on the victim machine.
Current post-mortem cyber-forensic techniques may cause significant disruption to the evidence gathering process by breaking active network connections and unmounting encrypted disks. Although newer live forensic analysis tools can preserve active state, they may taint evidence by leaving footprints in memory. To help address these concerns we present Forenscope, a framework that allows an investigator to examine the state of an active system without the effects of taint or forensic blurriness caused by analyzing a running system. We show how Forenscope can fit into accepted workflows to improve the evidence gathering process. Forenscope preserves the state of the running system and allows running processes, open files, encrypted filesystems and open network sockets to persist during the analysis process. Forenscope has been tested on live systems to show that it does not operationally disrupt critical processes and that it can perform an analysis in less than 15 seconds while using only 125 KB of memory. We show that Forenscope can detect stealth rootkits, neutralize threats and expedite the investigation process by finding evidence in memory.