Biblio
The data accessibility anytime and anywhere is nowadays the key feature for information technology enabled by the ubiquitous network system for huge applications. However, security and privacy are perceived as primary obstacles to its wide adoption when it is applied to the end user application. When sharing sensitive information, personal s' data protection is the paramount requirement for the security and privacy to ensure the trustworthiness of the service provider. To this end, this paper proposes communication security protocol to achieve data protection when a user is sending his sensitive data to the network through gateway. We design a cipher content and key exchange computation process. Finally, the performance analysis of the proposed scheme ensure the honesty of the gateway service provider, since the user has the ability to control who has access to his data by issuing a cryptographic access credential to data users.
Wireless sensor and actuator networks (WSAN) constitute an emerging technology with multiple applications in many different fields. Due to the features of WSAN (dynamism, redundancy, fault tolerance, and self-organization), this technology can be used as a supporting technology for the monitoring of critical infrastructures (CIs). For decades, the monitoring of CIs has centered on supervisory control and data acquisition (SCADA) systems, where operators can monitor and control the behavior of the system. The reach of the SCADA system has been hampered by the lack of deployment flexibility of the sensors that feed it with monitoring data. The integration of a multihop WSAN with SCADA for CI monitoring constitutes a novel approach to extend the SCADA reach in a cost-effective way, eliminating this handicap. However, the integration of WSAN and SCADA presents some challenges which have to be addressed in order to comprehensively take advantage of the WSAN features. This paper presents a solution for this joint integration. The solution uses a gateway and a Web services approach together with a Web-based SCADA, which provides an integrated platform accessible from the Internet. A real scenario where this solution has been successfully applied to monitor an electrical power grid is presented.