Visible to the public Biblio

Filters: Keyword is collision  [Clear All Filters]
2017-09-15
Salam, Md Iftekhar, Wong, Kenneth Koon-Ho, Bartlett, Harry, Simpson, Leonie, Dawson, Ed, Pieprzyk, Josef.  2016.  Finding State Collisions in the Authenticated Encryption Stream Cipher ACORN. Proceedings of the Australasian Computer Science Week Multiconference. :36:1–36:10.

This paper analyzes the authenticated encryption algorithm ACORN, a candidate in the CAESAR cryptographic competition. We identify weaknesses in the state update function of ACORN which result in collisions in the internal state of ACORN. This paper shows that for a given set of key and initialization vector values we can construct two distinct input messages which result in a collision in the ACORN internal state. Using a standard PC the collision can be found almost instantly when the secret key is known. This flaw can be used by a message sender to create a forged message which will be accepted as legitimate.

2017-05-19
Schäfer, Matthias, Leu, Patrick, Lenders, Vincent, Schmitt, Jens.  2016.  Secure Motion Verification Using the Doppler Effect. Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :135–145.

Future transportation systems highly rely on the integrity of spatial information provided by their means of transportation such as vehicles and planes. In critical applications (e.g. collision avoidance), tampering with this data can result in life-threatening situations. It is therefore essential for the safety of these systems to securely verify this information. While there is a considerable body of work on the secure verification of locations, movement of nodes has only received little attention in the literature. This paper proposes a new method to securely verify spatial movement of a mobile sender in all dimensions, i.e., position, speed, and direction. Our scheme uses Doppler shift measurements from different locations to verify a prover's motion. We provide formal proof for the security of the scheme and demonstrate its applicability to air traffic communications. Our results indicate that it is possible to reliably verify the motion of aircraft in currently operational systems with an equal error rate of zero.