Biblio
Military reconnaissance in 1999 has paved the way to establish its own, self-reliant and indigenous navigation system. The strategic necessity has been accomplished in 2013 by launching seven satellites in Geo-orbit and underlying Network control center in Bangalore and a new NavIC control center at Lucknow, later in 2016. ISTRAC is one of the premier and amenable center to track the Indian as well as external network satellite launch vehicle and provide house-keeping and inertial navigation (INC) data to launch control center in real time and to project team in off-line. Over the ISTRAC Launch network, Simple Network Management Protocol (SNMP) was disabled due to security and bandwidth reasons. The cons of SNMP comprise security risks that are normal trait whenever applied as an open standard. There is "security through obscurity" linked with any slight-used communications standard in SNMP. Detailed messages are being sent between devices, not just miniature pre-set codes. These cons in the SNMP are found in majority applications and more bandwidth seizure is another contention. Due to the above pros and cones in SNMP in form of open source, available network monitoring system (NMS) could not be employed for link monitoring and immediate decision making in ISTRAC network. The situation has made requisitions to evolve an in-house network monitoring system (NMS). It was evolved for real-time network monitoring as well as communication link performance explication. The evolved system has the feature of Internet control message protocol (ICMP) based link monitoring, 24/7 monitoring of all the nodes, GUI based real-time link status, Summary and individual link statistics on the GUI. It also identifies total downtime and generates summary reports. It does identification for out of order or looped packets, Email and SMS alert to Prime and Redundant system which one is down and repeat alert if the link is failed for more than 30 minutes. It has easy file based configuration and no application restart required. Generation of daily and monthly link status, offline link analysis plot of any day, less consumption of system resources are add-on features. It is fully secured in-house development, calculates total data flow over a network and co-relate data vs link percentage.
Ubiquitous WiFi infrastructure and smart phones offer a great opportunity to study physical activities. In this paper, we present MobiCamp, a large-scale testbed for studying mobility-related activities of residents on a campus. MobiCamp consists of \textasciitilde2,700 APs, \textasciitilde95,000 smart phones, and an App with \textasciitilde2,300 opt-in volunteer users. More specifically, we capture how mobile users interact with different types of buildings, with other users, and with classroom courses, etc. To achieve this goal, we first obtain a relatively complete coverage of the users' mobility traces by utilizing four types of information from SNMP and by relaxing the location granularity to roughly at the room level. Then the popular App provides user attributes (grade, gender, etc.) and fine-grained behavior information (phone usages, course timetables, etc.) of the sampled population. These detailed mobile data is then correlated with the mobility traces from the SNMP to estimate the entire campus population's physical activities. We use two applications to show the power of MobiCamp.