Visible to the public Biblio

Filters: Keyword is mental simulation  [Clear All Filters]
2022-08-12
Stegemann-Philipps, Christian, Butz, Martin V..  2021.  Learn It First: Grounding Language in Compositional Event-Predictive Encodings. 2021 IEEE International Conference on Development and Learning (ICDL). :1–6.
While language learning in infants and toddlers progresses somewhat seamlessly, in artificial systems the grounding of language in knowledge structures that are learned from sensorimotor experiences remains a hard challenge. Here we introduce LEARNA, which learns event-characterizing abstractions to resolve natural language ambiguity. LEARNA develops knowledge structures from simulated sensorimotor experiences. Given a possibly ambiguous descriptive utterance, the learned knowledge structures enable LEARNA to infer environmental scenes, and events unfolding within, which essentially constitute plausible imaginations of the utterance’s content. Similar event-predictive structures may help in developing artificial systems that can generate and comprehend descriptions of scenes and events.
2017-05-19
Wilson, Jason R., Krause, Evan, Scheutz, Matthias, Rivers, Morgan.  2016.  Analogical Generalization of Actions from Single Exemplars in a Robotic Architecture. Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems. :1015–1023.

Humans are often able to generalize knowledge learned from a single exemplar. In this paper, we present a novel integration of mental simulation and analogical generalization algorithms into a cognitive robotic architecture that enables a similarly rudimentary generalization capability in robots. Specifically, we show how a robot can generate variations of a given scenario and then use the results of those new scenarios run in a physics simulator to generate generalized action scripts using analogical mappings. The generalized action scripts then allow the robot to perform the originally learned activity in a wider range of scenarios with different types of objects without the need for additional exploration or practice. In a proof-of-concept demonstration we show how the robot can generalize from a previously learned pick-and-place action performed with a single arm on an object with a handle to a pick-and-place action of a cylindrical object with no handle with two arms.