Visible to the public Biblio

Filters: Keyword is deformations  [Clear All Filters]
2021-03-18
Banday, M. T., Sheikh, S. A..  2020.  Improving Security Control of Text-Based CAPTCHA Challenges using Honeypot and Timestamping. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :704—708.

The resistance to attacks aimed to break CAPTCHA challenges and the effectiveness, efficiency and satisfaction of human users in solving them called usability are the two major concerns while designing CAPTCHA schemes. User-friendliness, universality, and accessibility are related dimensions of usability, which must also be addressed adequately. With recent advances in segmentation and optical character recognition techniques, complex distortions, degradations and transformations are added to text-based CAPTCHA challenges resulting in their reduced usability. The extent of these deformations can be decreased if some additional security mechanism is incorporated in such challenges. This paper proposes an additional security mechanism that can add an extra layer of protection to any text-based CAPTCHA challenge, making it more challenging for bots and scripts that might be used to attack websites and web applications. It proposes the use of hidden text-boxes for user entry of CAPTCHA string which serves as honeypots for bots and automated scripts. The honeypot technique is used to trick bots and automated scripts into filling up input fields which legitimate human users cannot fill in. The paper reports implementation of honeypot technique and results of tests carried out over three months during which form submissions were logged for analysis. The results demonstrated great effectiveness of honeypots technique to improve security control and usability of text-based CAPTCHA challenges.

2017-05-19
Selim, Ahmed, Elgharib, Mohamed, Doyle, Linda.  2016.  Painting Style Transfer for Head Portraits Using Convolutional Neural Networks. ACM Trans. Graph.. 35:129:1–129:18.

Head portraits are popular in traditional painting. Automating portrait painting is challenging as the human visual system is sensitive to the slightest irregularities in human faces. Applying generic painting techniques often deforms facial structures. On the other hand portrait painting techniques are mainly designed for the graphite style and/or are based on image analogies; an example painting as well as its original unpainted version are required. This limits their domain of applicability. We present a new technique for transferring the painting from a head portrait onto another. Unlike previous work our technique only requires the example painting and is not restricted to a specific style. We impose novel spatial constraints by locally transferring the color distributions of the example painting. This better captures the painting texture and maintains the integrity of facial structures. We generate a solution through Convolutional Neural Networks and we present an extension to video. Here motion is exploited in a way to reduce temporal inconsistencies and the shower-door effect. Our approach transfers the painting style while maintaining the input photograph identity. In addition it significantly reduces facial deformations over state of the art.