Visible to the public Biblio

Filters: Keyword is physically unclonable functions  [Clear All Filters]
2022-09-20
Korenda, Ashwija Reddy, Afghah, Fatemeh, Razi, Abolfazl, Cambou, Bertrand, Begay, Taylor.  2021.  Fuzzy Key Generator Design using ReRAM-Based Physically Unclonable Functions. 2021 IEEE Physical Assurance and Inspection of Electronics (PAINE). :1—7.
Physical unclonable functions (PUFs) are used to create unique device identifiers from their inherent fabrication variability. Unstable readings and variation of the PUF response over time are key issues that limit the applicability of PUFs in real-world systems. In this project, we developed a fuzzy extractor (FE) to generate robust cryptographic keys from ReRAM-based PUFs. We tested the efficiency of the proposed FE using BCH and Polar error correction codes. We use ReRAM-based PUFs operating in pre-forming range to generate binary cryptographic keys at ultra-low power with an objective of tamper sensitivity. We investigate the performance of the proposed FE with real data using the reading of the resistance of pre-formed ReRAM cells under various noise conditions. The results show a bit error rate (BER) in the range of 10−5 for the Polar-codes based method when 10% of the ReRAM cell array is erroneous at Signal to Noise Ratio (SNR) of 20dB.This error rate is achieved by using helper data length of 512 bits for a 256 bit cryptographic key. Our method uses a 2:1 ratio for helper data and key, much lower than the majority of previously reported methods. This property makes our method more robust against helper data attacks.
2021-01-28
Ganji, F., Amir, S., Tajik, S., Forte, D., Seifert, J.-P..  2020.  Pitfalls in Machine Learning-based Adversary Modeling for Hardware Systems. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :514—519.

The concept of the adversary model has been widely applied in the context of cryptography. When designing a cryptographic scheme or protocol, the adversary model plays a crucial role in the formalization of the capabilities and limitations of potential attackers. These models further enable the designer to verify the security of the scheme or protocol under investigation. Although being well established for conventional cryptanalysis attacks, adversary models associated with attackers enjoying the advantages of machine learning techniques have not yet been developed thoroughly. In particular, when it comes to composed hardware, often being security-critical, the lack of such models has become increasingly noticeable in the face of advanced, machine learning-enabled attacks. This paper aims at exploring the adversary models from the machine learning perspective. In this regard, we provide examples of machine learning-based attacks against hardware primitives, e.g., obfuscation schemes and hardware root-of-trust, claimed to be infeasible. We demonstrate that this assumption becomes however invalid as inaccurate adversary models have been considered in the literature.

2020-09-14
Chatterjee, Urbi, Govindan, Vidya, Sadhukhan, Rajat, Mukhopadhyay, Debdeep, Chakraborty, Rajat Subhra, Mahata, Debashis, Prabhu, Mukesh M..  2019.  Building PUF Based Authentication and Key Exchange Protocol for IoT Without Explicit CRPs in Verifier Database. IEEE Transactions on Dependable and Secure Computing. 16:424–437.
Physically Unclonable Functions (PUFs) promise to be a critical hardware primitive to provide unique identities to billions of connected devices in Internet of Things (IoTs). In traditional authentication protocols a user presents a set of credentials with an accompanying proof such as password or digital certificate. However, IoTs need more evolved methods as these classical techniques suffer from the pressing problems of password dependency and inability to bind access requests to the “things” from which they originate. Additionally, the protocols need to be lightweight and heterogeneous. Although PUFs seem promising to develop such mechanism, it puts forward an open problem of how to develop such mechanism without needing to store the secret challenge-response pair (CRP) explicitly at the verifier end. In this paper, we develop an authentication and key exchange protocol by combining the ideas of Identity based Encryption (IBE), PUFs and Key-ed Hash Function to show that this combination can help to do away with this requirement. The security of the protocol is proved formally under the Session Key Security and the Universal Composability Framework. A prototype of the protocol has been implemented to realize a secured video surveillance camera using a combination of an Intel Edison board, with a Digilent Nexys-4 FPGA board consisting of an Artix-7 FPGA, together serving as the IoT node. We show, though the stand-alone video camera can be subjected to man-in-the-middle attack via IP-spoofing using standard network penetration tools, the camera augmented with the proposed protocol resists such attacks and it suits aptly in an IoT infrastructure making the protocol deployable for the industry.
2020-09-04
Laguduva, Vishalini, Islam, Sheikh Ariful, Aakur, Sathyanarayanan, Katkoori, Srinivas, Karam, Robert.  2019.  Machine Learning Based IoT Edge Node Security Attack and Countermeasures. 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :670—675.
Advances in technology have enabled tremendous progress in the development of a highly connected ecosystem of ubiquitous computing devices collectively called the Internet of Things (IoT). Ensuring the security of IoT devices is a high priority due to the sensitive nature of the collected data. Physically Unclonable Functions (PUFs) have emerged as critical hardware primitive for ensuring the security of IoT nodes. Malicious modeling of PUF architectures has proven to be difficult due to the inherently stochastic nature of PUF architectures. Extant approaches to malicious PUF modeling assume that a priori knowledge and physical access to the PUF architecture is available for malicious attack on the IoT node. However, many IoT networks make the underlying assumption that the PUF architecture is sufficiently tamper-proof, both physically and mathematically. In this work, we show that knowledge of the underlying PUF structure is not necessary to clone a PUF. We present a novel non-invasive, architecture independent, machine learning attack for strong PUF designs with a cloning accuracy of 93.5% and improvements of up to 48.31% over an alternative, two-stage brute force attack model. We also propose a machine-learning based countermeasure, discriminator, which can distinguish cloned PUF devices and authentic PUFs with an average accuracy of 96.01%. The proposed discriminator can be used for rapidly authenticating millions of IoT nodes remotely from the cloud server.
2020-03-23
Korenda, Ashwija Reddy, Afghah, Fatemeh, Cambou, Bertrand, Philabaum, Christopher.  2019.  A Proof of Concept SRAM-based Physically Unclonable Function (PUF) Key Generation Mechanism for IoT Devices. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–8.
This paper provides a proof of concept for using SRAM based Physically Unclonable Functions (PUFs) to generate private keys for IoT devices. PUFs are utilized, as there is inadequate protection for secret keys stored in the memory of the IoT devices. We utilize a custom-made Arduino mega shield to extract the fingerprint from SRAM chip on demand. We utilize the concepts of ternary states to exclude the cells which are easily prone to flip, allowing us to extract stable bits from the fingerprint of the SRAM. Using the custom-made software for our SRAM device, we can control the error rate of the PUF to achieve an adjustable memory-based PUF for key generation. We utilize several fuzzy extractor techniques based on using different error correction coding methods to generate secret keys from the SRAM PUF, and study the trade-off between the false authentication rate and false rejection rate of the PUF.
2019-05-01
Gu, Hongxiang, Potkonjak, Miodrag.  2018.  Efficient and Secure Group Key Management in IoT Using Multistage Interconnected PUF. Proceedings of the International Symposium on Low Power Electronics and Design. :8:1–8:6.
Secure group-oriented communication is crucial to a wide range of applications in Internet of Things (IoT). Security problems related to group-oriented communications in IoT-based applications placed in a privacy-sensitive environment have become a major concern along with the development of the technology. Unfortunately, many IoT devices are designed to be portable and light-weight; thus, their functionalities, including security modules, are heavily constrained by the limited energy resources (e.g., battery capacity). To address these problems, we propose a group key management scheme based on a novel physically unclonable function (PUF) design: multistage interconnected PUF (MIPUF) to secure group communications in an energy-constrained environment. Our design is capable of performing key management tasks such as key distribution, key storage and rekeying securely and efficiently. We show that our design is secure against multiple attack methods and our experimental results show that our design saves 47.33% of energy globally comparing to state-of-the-art Elliptic-curve cryptography (ECC)-based key management scheme on average.
2018-06-11
Armstrong, D., Nasri, B., Karri, R., Shahrjerdi, D..  2017.  Hybrid silicon CMOS-carbon nanotube physically unclonable functions. 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). :1–3.

Physically unclonable functions (PUFs) are used to uniquely identify electronic devices. Here, we introduce a hybrid silicon CMOS-nanotube PUF circuit that uses the variations of nanotube transistors to generate a random response. An analog silicon circuit subsequently converts the nanotube response to zero or one bits. We fabricate an array of nanotube transistors to study and model their device variability. The behavior of the hybrid CMOS-nanotube PUF is then simulated. The parameters of the analog circuit are tuned to achieve the desired normalized Hamming inter-distance of 0.5. The co-design of the nanotube array and the silicon CMOS is an attractive feature for increasing the immunity of the hybrid PUF against an unauthorized duplication. The heterogeneous integration of nanotubes with silicon CMOS offers a new strategy for realizing security tokens that are strong, low-cost, and reliable.

2018-01-23
Abtioglu, E., Yeniçeri, R., Gövem, B., Göncü, E., Yalçin, M. E., Saldamli, G..  2017.  Partially Reconfigurable IP Protection System with Ring Oscillator Based Physically Unclonable Functions. 2017 New Generation of CAS (NGCAS). :65–68.

The size of counterfeiting activities is increasing day by day. These activities are encountered especially in electronics market. In this paper, a countermeasure against counterfeiting on intellectual properties (IP) on Field-Programmable Gate Arrays (FPGA) is proposed. FPGA vendors provide bitstream ciphering as an IP security solution such as battery-backed or non-volatile FPGAs. However, these solutions are secure as long as they can keep decryption key away from third parties. Key storage and key transfer over unsecure channels expose risks for these solutions. In this work, physical unclonable functions (PUFs) have been used for key generation. Generating a key from a circuit in the device solves key transfer problem. Proposed system goes through different phases when it operates. Therefore, partial reconfiguration feature of FPGAs is essential for feasibility of proposed system.

2017-05-19
Bellon, Sebastien, Favi, Claudio, Malek, Miroslaw, Macchetti, Marco, Regazzoni, Francesco.  2016.  Evaluating the Impact of Environmental Factors on Physically Unclonable Functions (Abstract Only). Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. :279–279.

Fabrication process introduces some inherent variability to the attributes of transistors (in particular length, widths, oxide thickness). As a result, every chip is physically unique. Physical uniqueness of microelectronics components can be used for multiple security applications. Physically Unclonable Functions (PUFs) are built to extract the physical uniqueness of microelectronics components and make it usable for secure applications. However, the microelectronics components used by PUFs designs suffer from external, environmental variations that impact the PUF behavior. Variations of temperature gradients during manufacturing can bias the PUF responses. Variations of temperature or thermal noise during PUF operation change the behavior of the circuit, and can introduce errors in PUF responses. Detailed knowledge of the behavior of PUFs operating over various environmental factors is needed to reliably extract and demonstrate uniqueness of the chips. In this work, we present a detailed and exhaustive analysis of the behavior of two PUF designs, a ring oscillator PUF and a timing path violation PUF. We have implemented both PUFs using FPGA fabricated by Xilinx, and analyzed their behavior while varying temperature and supply voltage. Our experiments quantify the robustness of each design, demonstrate their sensitivity to temperature and show the impact which supply voltage has on the uniqueness of the analyzed PUFs.