Biblio
Decoy routing is an emerging approach for censorship circumvention in which circumvention is implemented with help from a number of volunteer Internet autonomous systems, called decoy ASes. Recent studies on decoy routing consider all decoy routing systems to be susceptible to a fundamental attack – regardless of their specific designs–in which the censors re-route traffic around decoy ASes, thereby preventing censored users from using such systems. In this paper, we propose a new architecture for decoy routing that, by design, is significantly stronger to rerouting attacks compared to all previous designs. Unlike previous designs, our new architecture operates decoy routers only on the downstream traffic of the censored users; therefore we call it downstream-only decoy routing. As we demonstrate through Internet-scale BGP simulations, downstream-only decoy routing offers significantly stronger resistance to rerouting attacks, which is intuitively because a (censoring) ISP has much less control on the downstream BGP routes of its traffic. Designing a downstream-only decoy routing system is a challenging engineering problem since decoy routers do not intercept the upstream traffic of censored users. We design the first downstream-only decoy routing system, called Waterfall, by devising unique covert communication mechanisms. We also use various techniques to make our Waterfall implementation resistant to traffic analysis attacks. We believe that downstream-only decoy routing is a significant step towards making decoy routing systems practical. This is because a downstream-only decoy routing system can be deployed using a significantly smaller number of volunteer ASes, given a target resistance to rerouting attacks. For instance, we show that a Waterfall implementation with only a single decoy AS is as resistant to routing attacks (against China) as a traditional decoy system (e.g., Telex) with 53 decoy ASes.
Decoy Routing, the use of routers (rather than end hosts) as proxies, is a new direction in anti-censorship research. Decoy Routers (DRs), placed in Autonomous Systems, proxy traffic from users; so the adversary, e.g. a censorious government, attempts to avoid them. It is quite difficult to place DRs so the adversary cannot route around them – for example, we need the cooperation of 850 ASes to contain China alone [1]. In this paper, we consider a different approach. We begin by noting that DRs need not intercept all the network paths from a country, just those leading to Overt Destinations, i.e. unfiltered websites hosted outside the country (usually popular ones, so that client traffic to the OD does not make the censor suspicious). Our first question is – How many ASes are required for installing DRs to intercept a large fraction of paths from e.g. China to the top-n websites (as per Alexa)? How does this number grow with n ? To our surprise, the same few ($\approx$ 30) ASes intercept over 90% of paths to the top n sites worldwide, for n = 10, 20...200 and also to other destinations. Investigating further, we find that this result fits perfectly with the hierarchical model of the Internet [2]; our first contribution is to demonstrate with real paths that the number of ASes required for a world-wide DR framework is small ($\approx$ 30). Further, censor nations' attempts to filter traffic along the paths transiting these 30 ASes will not only block their own citizens, but others residing in foreign ASes. Our second contribution in this paper is to consider the details of DR placement: not just in which ASes DRs should be placed to intercept traffic, but exactly where in each AS. We find that even with our small number of ASes, we still need a total of about 11, 700 DRs. We conclude that, even though a DR system involves far fewer ASes than previously thought, it is still a major undertaking. For example, the current routers cost over 10.3 billion USD, so if Decoy Routing at line speed requires all-new hardware, the cost alone would make such a project unfeasible for most actors (but not for major nation states).
Decoy routing is a promising new approach for censorship circumvention that relies on traffic re-direction by volunteer autonomous systems. Decoy routing is subject to a fundamental censorship attack, called routing around decoy (RAD), in which the censors re-route their clients' Internet traffic in order to evade decoy routing autonomous systems. Recently, there has been a heated debate in the community on the real-world feasibility of decoy routing in the presence of the RAD attack. Unfortunately, previous studies rely their analysis on heuristic-based mechanisms for decoy placement strategies as well as ad hoc strategies for the implementation of the RAD attack by the censors. In this paper, we perform the first systematic analysis of decoy routing in the presence of the RAD attack. We use game theory to model the interactions between decoy router deployers and the censors in various settings. Our game-theoretic analysis finds the optimal decoy placement strategies–-as opposed to heuristic-based placements–-in the presence of RAD censors who take their optimal censorship actions–-as opposed to some ad hoc implementation of RAD. That is, we investigate the best decoy placement given the best RAD censorship. We consider two business models for the real-world deployment of decoy routers: a central deployment that resembles that of Tor and a distributed deployment where autonomous systems individually decide on decoy deployment based on their economic interests. Through extensive simulation of Internet routes, we derive the optimal strategies in the two models for various censoring countries and under different assumptions about the budget and preferences of the censors and decoy deployers. We believe that our study is a significant step forward in understanding the practicality of the decoy routing circumvention approach.