Visible to the public Biblio

Filters: Keyword is selfish mining  [Clear All Filters]
2023-03-31
Winarno, Agus, Angraini, Novita, Hardani, Muhammad Salmon, Harwahyu, Ruki, Sari, Riri Fitri.  2022.  Evaluation of Decision Matrix, Hash Rate and Attacker Regions Effects in Bitcoin Network Securities. 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom). :72–77.
Bitcoin is a famously decentralized cryptocurrency. Bitcoin is excellent because it is a digital currency that provides convenience and security in transactions. Transaction security in Bitcoin uses a consensus involving a distributed system, the security of this system generates a hash sequence with a Proof of Work (PoW) mechanism. However, in its implementation, various attacks appear that are used to generate profits from the existing system. Attackers can use various types of methods to get an unfair portion of the mining income. Such attacks are commonly referred to as Mining attacks. Among which the famous is the Selfish Mining attack. In this study, we simulate the effect of changing decision matrix, attacker region, attacker hash rate on selfish miner attacks by using the opensource NS3 platform. The experiment aims to see the effect of using 1%, 10%, and 20% decision matrices with different attacker regions and different attacker hash rates on Bitcoin selfish mining income. The result of this study shows that regional North America and Europe have the advantage in doing selfish mining attacks. This advantage is also supported by increasing the decision matrix from 1%, 10%, 20%. The highest attacker income, when using decision matrix 20% in North America using 16 nodes on 0.3 hash rate with income 129 BTC. For the hash rate, the best result for a selfish mining attack is between 27% to 30% hash rate.
2022-07-15
D'Arco, Paolo, Ansaroudi, Zahra Ebadi.  2021.  Security Attacks on Multi-Stage Proof-of-Work. 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :698—703.
Multi-stage Proof-of-Work is a recently proposed protocol which extends the Proof-of-Work protocol used in Bitcoin. It splits Proof-of-Work into multiple stages, to achieve a more efficient block generation and a fair reward distribution. In this paper we study some of the Multi-stage Proof-of-Work security vulnerabilities. Precisely, we present two attacks: a Selfish Mining attack and a Selfish Stage-Withholding attack. We show that Multi-stage Proof-of-Work is not secure against a selfish miner owning more than 25% of the network hashing power. Moreover, we show that Selfish Stage-Withholding is a complementary strategy to boost a selfish miner's profitability.
2019-03-18
Liu, Hanqing, Ruan, Na, Du, Rongtian, Jia, Weijia.  2018.  On the Strategy and Behavior of Bitcoin Mining with N-attackers. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :357–368.
Selfish mining is a well-known mining attack strategy discovered by Eyal and Sirer in 2014. After that, the attackers' strategy has been further discussed by many other works, which analyze the strategy and behavior of a single attacker. The extension of the strategy research is greatly restricted by the assumption that there is only one attacker in the blockchain network, since, in many cases, a proof of work blockchain has multiple attackers. The attackers can be independent of others instead of sharing information and attacking the blockchain as a whole. In this paper, we will establish a new model to analyze the miners' behavior in a proof of work blockchain with multiple attackers. Based on our model, we extend the attackers' strategy by proposing a new strategy set publish-n. Meanwhile, we will also review other attacking strategies such as selfish mining and stubborn mining in our model to explore whether these strategies work or not when there are multiple attackers. The performances of different strategies are compared using relative stale block rate of the attackers. In a proof of work blockchain model with two attackers, strategy publish-n can beat selfish mining by up to 26.3%.
2017-05-22
Carlsten, Miles, Kalodner, Harry, Weinberg, S. Matthew, Narayanan, Arvind.  2016.  On the Instability of Bitcoin Without the Block Reward. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :154–167.

Bitcoin provides two incentives for miners: block rewards and transaction fees. The former accounts for the vast majority of miner revenues at the beginning of the system, but it is expected to transition to the latter as the block rewards dwindle. There has been an implicit belief that whether miners are paid by block rewards or transaction fees does not affect the security of the block chain. We show that this is not the case. Our key insight is that with only transaction fees, the variance of the block reward is very high due to the exponentially distributed block arrival time, and it becomes attractive to fork a "wealthy" block to "steal" the rewards therein. We show that this results in an equilibrium with undesirable properties for Bitcoin's security and performance, and even non-equilibria in some circumstances. We also revisit selfish mining and show that it can be made profitable for a miner with an arbitrarily low hash power share, and who is arbitrarily poorly connected within the network. Our results are derived from theoretical analysis and confirmed by a new Bitcoin mining simulator that may be of independent interest. We discuss the troubling implications of our results for Bitcoin's future security and draw lessons for the design of new cryptocurrencies.