Visible to the public Biblio

Filters: Keyword is nmf  [Clear All Filters]
2020-07-13
Li, Tao, Ren, Yongzhen, Ren, Yongjun, Wang, Lina, Wang, Lingyun, Wang, Lei.  2019.  NMF-Based Privacy-Preserving Collaborative Filtering on Cloud Computing. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :476–481.
The security of user personal information on cloud computing is an important issue for the recommendation system. In order to provide high quality recommendation services, privacy of user is often obtained by untrusted recommendation systems. At the same time, malicious attacks often use the recommendation results to try to guess the private data of user. This paper proposes a hybrid algorithm based on NMF and random perturbation technology, which implements the recommendation system and solves the protection problem of user privacy data in the recommendation process on cloud computing. Compared with the privacy protection algorithm of SVD, the elements of the matrix after the decomposition of the new algorithm are non-negative elements, avoiding the meaninglessness of negative numbers in the matrix formed by texts, images, etc., and it has a good explanation for the local characteristics of things. Experiments show that the new algorithm can produce recommendation results with certain accuracy under the premise of protecting users' personal privacy on cloud computing.
2017-05-22
Duan, Jia, Zhou, Jiantao, Li, Yuanman.  2016.  Secure and Verifiable Outsourcing of Nonnegative Matrix Factorization (NMF). Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. :63–68.

Cloud computing platforms are becoming increasingly prevalent and readily available nowadays, providing us alternative and economic services for resource-constrained clients to perform large-scale computation. In this work, we address the problem of secure outsourcing of large-scale nonnegative matrix factorization (NMF) to a cloud in a way that the client can verify the correctness of results with small overhead. The input matrix protection is achieved by a lightweight, permutation-based encryption mechanism. By exploiting the iterative nature of NMF computation, we propose a single-round verification strategy, which can be proved to be effective. Both theoretical and experimental results are given to demonstrate the superior performance of our scheme.