Visible to the public Biblio

Filters: Keyword is language-based security  [Clear All Filters]
2021-04-29
Lu, Y., Zhang, C..  2020.  Nontransitive Security Types for Coarse-grained Information Flow Control. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :199—213.

Language-based information flow control (IFC) aims to provide guarantees about information propagation in computer systems having multiple security levels. Existing IFC systems extend the lattice model of Denning's, enforcing transitive security policies by tracking information flows along with a partially ordered set of security levels. They yield a transitive noninterference property of either confidentiality or integrity. In this paper, we explore IFC for security policies that are not necessarily transitive. Such nontransitive security policies avoid unwanted or unexpected information flows implied by transitive policies and naturally accommodate high-level coarse-grained security requirements in modern component-based software. We present a novel security type system for enforcing nontransitive security policies. Unlike traditional security type systems that verify information propagation by subtyping security levels of a transitive policy, our type system relaxes strong transitivity by inferring information flow history through security levels and ensuring that they respect the nontransitive policy in effect. Such a type system yields a new nontransitive noninterference property that offers more flexible information flow relations induced by security policies that do not have to be transitive, therefore generalizing the conventional transitive noninterference. This enables us to directly reason about the extent of information flows in the program and restrict interactions between security-sensitive and untrusted components.

2018-02-28
Ngo, V. C., Dehesa-Azuara, M., Fredrikson, M., Hoffmann, J..  2017.  Verifying and Synthesizing Constant-Resource Implementations with Types. 2017 IEEE Symposium on Security and Privacy (SP). :710–728.

Side channel attacks have been used to extract critical data such as encryption keys and confidential user data in a variety of adversarial settings. In practice, this threat is addressed by adhering to a constant-time programming discipline, which imposes strict constraints on the way in which programs are written. This introduces an additional hurdle for programmers faced with the already difficult task of writing secure code, highlighting the need for solutions that give the same source-level guarantees while supporting more natural programming models. We propose a novel type system for verifying that programs correctly implement constant-resource behavior. Our type system extends recent work on automatic amortized resource analysis (AARA), a set of techniques that automatically derive provable upper bounds on the resource consumption of programs. We devise new techniques that build on the potential method to achieve compositionality, precision, and automation. A strict global requirement that a program always maintains constant resource usage is too restrictive for most practical applications. It is sufficient to require that the program's resource behavior remain constant with respect to an attacker who is only allowed to observe part of the program's state and behavior. To account for this, our type system incorporates information flow tracking into its resource analysis. This allows our system to certify programs that need to violate the constant-time requirement in certain cases, as long as doing so does not leak confidential information to attackers. We formalize this guarantee by defining a new notion of resource-aware noninterference, and prove that our system enforces it. Finally, we show how our type inference algorithm can be used to synthesize a constant-time implementation from one that cannot be verified as secure, effectively repairing insecure programs automatically. We also show how a second novel AARA system that computes lower bounds on reso- rce usage can be used to derive quantitative bounds on the amount of information that a program leaks through its resource use. We implemented each of these systems in Resource Aware ML, and show that it can be applied to verify constant-time behavior in a number of applications including encryption and decryption routines, database queries, and other resource-aware functionality.

2017-05-30
Gollamudi, Anitha, Chong, Stephen.  2016.  Automatic Enforcement of Expressive Security Policies Using Enclaves. Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications. :494–513.

Hardware-based enclave protection mechanisms, such as Intel’s SGX, ARM’s TrustZone, and Apple’s Secure Enclave, can protect code and data from powerful low-level attackers. In this work, we use enclaves to enforce strong application-specific information security policies. We present IMPE, a novel calculus that captures the essence of SGX-like enclave mechanisms, and show that a security-type system for IMPE can enforce expressive confidentiality policies (including erasure policies and delimited release policies) against powerful low-level attackers, including attackers that can arbitrarily corrupt non-enclave code, and, under some circumstances, corrupt enclave code. We present a translation from an expressive security-typed calculus (that is not aware of enclaves) to IMPE. The translation automatically places code and data into enclaves to enforce the security policies of the source program.

2017-05-22
Kurilova, Darya, Potanin, Alex, Aldrich, Jonathan.  2016.  Modules in Wyvern: Advanced Control over Security and Privacy. Proceedings of the Symposium and Bootcamp on the Science of Security. :68–68.

In today's systems, restricting the authority of untrusted code is difficult because, by default, code has the same authority as the user running it. Object capabilities are a promising way to implement the principle of least authority, but being too low-level and fine-grained, take away many conveniences provided by module systems. We present a module system design that is capability-safe, yet preserves most of the convenience of conventional module systems. We demonstrate how to ensure key security and privacy properties of a program as a mode of use of our module system. Our authority safety result formally captures the role of mutable state in capability-based systems and uses a novel non-transitive notion of authority, which allows us to reason about authority restriction: the encapsulation of a stronger capability inside a weaker one.

Sheff, Isaac, Magrino, Tom, Liu, Jed, Myers, Andrew C., van Renesse, Robbert.  2016.  Safe Serializable Secure Scheduling: Transactions and the Trade-Off Between Security and Consistency. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :229–241.

Modern applications often operate on data in multiple administrative domains. In this federated setting, participants may not fully trust each other. These distributed applications use transactions as a core mechanism for ensuring reliability and consistency with persistent data. However, the coordination mechanisms needed for transactions can both leak confidential information and allow unauthorized influence. By implementing a simple attack, we show these side channels can be exploited. However, our focus is on preventing such attacks. We explore secure scheduling of atomic, serializable transactions in a federated setting. While we prove that no protocol can guarantee security and liveness in all settings, we establish conditions for sets of transactions that can safely complete under secure scheduling. Based on these conditions, we introduce \textbackslashti\staged commit\, a secure scheduling protocol for federated transactions. This protocol avoids insecure information channels by dividing transactions into distinct stages. We implement a compiler that statically checks code to ensure it meets our conditions, and a system that schedules these transactions using the staged commit protocol. Experiments on this implementation demonstrate that realistic federated transactions can be scheduled securely, atomically, and efficiently.