Visible to the public Biblio

Filters: Keyword is Algorithm  [Clear All Filters]
2017-05-16
Anh, Pham Nguyen Quang, Fan, Rui, Wen, Yonggang.  2016.  Balanced Hashing and Efficient GPU Sparse General Matrix-Matrix Multiplication. Proceedings of the 2016 International Conference on Supercomputing. :36:1–36:12.

General sparse matrix-matrix multiplication (SpGEMM) is a core component of many algorithms. A number of recent works have used high throughput graphics processing units (GPUs) to accelerate SpGEMM. However, exploiting the power of GPUs for SpGEMM requires addressing a number of challenges, including highly imbalanced workloads and large numbers of inefficient random global memory accesses. This paper presents a SpGEMM algorithm which uses several novel techniques to overcome these problems. We first propose two low cost methods to achieve perfect load balancing during the most expensive step in SpGEMM. Next, we show how to eliminate nearly all random global memory accesses using shared memory based hash tables. To optimize the performance of the hash tables, we propose a lightweight method to estimate the number of nonzeros in the output matrix. We compared our algorithm to the CUSP, CUSPARSE and the state-of-the-art BHSPARSE GPU SpGEMM algorithms, and show that it performs 5.6x, 2.4x and 1.5x better on average, and up to 11.8x, 9.5x and 2.5x better in the best case, respectively. Furthermore, we show that our algorithm performs especially well on highly imbalanced and unstructured matrices.

Shrivastava, Anshumali, Konig, Arnd Christian, Bilenko, Mikhail.  2016.  Time Adaptive Sketches (Ada-Sketches) for Summarizing Data Streams. Proceedings of the 2016 International Conference on Management of Data. :1417–1432.

Obtaining frequency information of data streams, in limited space, is a well-recognized problem in literature. A number of recent practical applications (such as those in computational advertising) require temporally-aware solutions: obtaining historical count statistics for both time-points as well as time-ranges. In these scenarios, accuracy of estimates is typically more important for recent instances than for older ones; we call this desirable property Time Adaptiveness. With this observation, [20] introduced the Hokusai technique based on count-min sketches for estimating the frequency of any given item at any given time. The proposed approach is problematic in practice, as its memory requirements grow linearly with time, and it produces discontinuities in the estimation accuracy. In this work, we describe a new method, Time-adaptive Sketches, (Ada-sketch), that overcomes these limitations, while extending and providing a strict generalization of several popular sketching algorithms. The core idea of our method is inspired by the well-known digital Dolby noise reduction procedure that dates back to the 1960s. The theoretical analysis presented could be of independent interest in itself, as it provides clear results for the time-adaptive nature of the errors. An experimental evaluation on real streaming datasets demonstrates the superiority of the described method over Hokusai in estimating point and range queries over time. The method is simple to implement and offers a variety of design choices for future extensions. The simplicity of the procedure and the method's generalization of classic sketching techniques give hope for wide applicability of Ada-sketches in practice.

Yang, Yang, Luo, Yadan, Chen, Weilun, Shen, Fumin, Shao, Jie, Shen, Heng Tao.  2016.  Zero-Shot Hashing via Transferring Supervised Knowledge. Proceedings of the 2016 ACM on Multimedia Conference. :1286–1295.

Hashing has shown its efficiency and effectiveness in facilitating large-scale multimedia applications. Supervised knowledge (\textbackslashemph\e.g.\, semantic labels or pair-wise relationship) associated to data is capable of significantly improving the quality of hash codes and hash functions. However, confronted with the rapid growth of newly-emerging concepts and multimedia data on the Web, existing supervised hashing approaches may easily suffer from the scarcity and validity of supervised information due to the expensive cost of manual labelling. In this paper, we propose a novel hashing scheme, termed \textbackslashemph\zero-shot hashing\ (ZSH), which compresses images of "unseen" categories to binary codes with hash functions learned from limited training data of "seen" categories. Specifically, we project independent data labels (i.e., 0/1-form label vectors) into semantic embedding space, where semantic relationships among all the labels can be precisely characterized and thus seen supervised knowledge can be transferred to unseen classes. Moreover, in order to cope with the semantic shift problem, we rotate the embedded space to more suitably align the embedded semantics with the low-level visual feature space, thereby alleviating the influence of semantic gap. In the meantime, to exert positive effects on learning high-quality hash functions, we further propose to preserve local structural property and discrete nature in binary codes. Besides, we develop an efficient alternating algorithm to solve the ZSH model. Extensive experiments conducted on various real-life datasets show the superior zero-shot image retrieval performance of ZSH as compared to several state-of-the-art hashing methods.

Guo, Huan, Li, Zhengmin, Liu, Qingyun, Li, Jia, Zhou, Zhou, Sun, Bo.  2016.  A High Performance IPv6 Flow Table Lookup Algorithm Based on Hash. Proceedings of the 2016 ACM International on Workshop on Traffic Measurements for Cybersecurity. :35–39.

With the rapid increasing IPv6 network traffic, some network process systems like DPI and firewall cannot meet the demand of high network bandwidth. Flow table based on hash is one of the bottlenecks. In this paper, we measure the characteristics of IPv6 address and propose an entropy based revision hash algorithm, which can produce a better distribution within acceptable time. Moreover, we use a hierarchical hash strategy to reduce hash table lookup times further more even in extreme cases.

2017-03-08
Santra, N., Biswas, S., Acharyya, S..  2015.  Neural modeling of Gene Regulatory Network using Firefly algorithm. 2015 IEEE UP Section Conference on Electrical Computer and Electronics (UPCON). :1–6.

Genes, proteins and other metabolites present in cellular environment exhibit a virtual network that represents the regulatory relationship among its constituents. This network is called Gene Regulatory Network (GRN). Computational reconstruction of GRN reveals the normal metabolic pathway as well as disease motifs. Availability of microarray gene expression data from normal and diseased tissues makes the job easier for computational biologists. Reconstruction of GRN is based on neural modeling. Here we have used discrete and continuous versions of a meta-heuristic algorithm named Firefly algorithm for structure and parameter learning of GRNs respectively. The discrete version for this problem is proposed by us and it has been applied to explore the discrete search space of GRN structure. To evaluate performance of the algorithm, we have used a widely used synthetic GRN data set. The algorithm shows an accuracy rate above 50% in finding GRN. The accuracy level of the performance of Firefly algorithm in structure and parameter optimization of GRN is promising.

2015-04-30
Fawzi, H., Tabuada, P., Diggavi, S..  2014.  Secure Estimation and Control for Cyber-Physical Systems Under Adversarial Attacks. Automatic Control, IEEE Transactions on. 59:1454-1467.

The vast majority of today's critical infrastructure is supported by numerous feedback control loops and an attack on these control loops can have disastrous consequences. This is a major concern since modern control systems are becoming large and decentralized and thus more vulnerable to attacks. This paper is concerned with the estimation and control of linear systems when some of the sensors or actuators are corrupted by an attacker. We give a new simple characterization of the maximum number of attacks that can be detected and corrected as a function of the pair (A,C) of the system and we show in particular that it is impossible to accurately reconstruct the state of a system if more than half the sensors are attacked. In addition, we show how the design of a secure local control loop can improve the resilience of the system. When the number of attacks is smaller than a threshold, we propose an efficient algorithm inspired from techniques in compressed sensing to estimate the state of the plant despite attacks. We give a theoretical characterization of the performance of this algorithm and we show on numerical simulations that the method is promising and allows to reconstruct the state accurately despite attacks. Finally, we consider the problem of designing output-feedback controllers that stabilize the system despite sensor attacks. We show that a principle of separation between estimation and control holds and that the design of resilient output feedback controllers can be reduced to the design of resilient state estimators.