Biblio
We present Clio, an information flow control (IFC) system that transparently incorporates cryptography to enforce confidentiality and integrity policies on untrusted storage. Clio insulates developers from explicitly manipulating keys and cryptographic primitives by leveraging the policy language of the IFC system to automatically use the appropriate keys and correct cryptographic operations. We prove that Clio is secure with a novel proof technique that is based on a proof style from cryptography together with standard programming languages results. We present a prototype Clio implementation and a case study that demonstrates Clio's practicality.
Hardware-based enclave protection mechanisms, such as Intelâs SGX, ARMâs TrustZone, and Appleâs Secure Enclave, can protect code and data from powerful low-level attackers. In this work, we use enclaves to enforce strong application-specific information security policies. We present IMPE, a novel calculus that captures the essence of SGX-like enclave mechanisms, and show that a security-type system for IMPE can enforce expressive confidentiality policies (including erasure policies and delimited release policies) against powerful low-level attackers, including attackers that can arbitrarily corrupt non-enclave code, and, under some circumstances, corrupt enclave code. We present a translation from an expressive security-typed calculus (that is not aware of enclaves) to IMPE. The translation automatically places code and data into enclaves to enforce the security policies of the source program.