Visible to the public Biblio

Filters: Keyword is knowledge-based  [Clear All Filters]
2018-05-01
Wen, Senhao, He, Nengqiang, Yan, Hanbing.  2017.  Detecting and Predicting APT Based on the Study of Cyber Kill Chain with Hierarchical Knowledge Reasoning. Proceedings of the 2017 VI International Conference on Network, Communication and Computing. :115–119.
It has been discovered that quite a few organizations have become the victims of APT, which is a deliberate and malicious espionage threat to military, political, infrastructure targets for the purpose of stealing the core data or thwarting the normal operation of the organizations. Thus, working out a solution for detecting and predicting APT is a major goal for scientific research. But APT has a characteristic feature of good concealment which prevent we capturing it just in time by existing solutions. In this paper, through a deep study of Cyber Kill Chain, we proposed a solution to detect and predict APTs with hierarchical Knowledge reasoning on the basis of cyber-security-monitoring, intelligence-gathering, etc. The solution seeks for connections between real-time alarms and the intelligence from Hacker Profile, Cyber Resources Profile, Social Engineering Database, Cyber Attack Tool Fingerprint Database, Vulnerability Database, Malicious Code Genome Map, etc. According to our experiments, it is effective and has high accuracy.
2017-05-30
Angarita, Rafael, Rukoz, Marta, Manouvrier, Maude, Cardinale, Yudith.  2016.  A Knowledge-based Approach for Self-healing Service-oriented Applications. Proceedings of the 8th International Conference on Management of Digital EcoSystems. :1–8.

In the context of service-oriented applications, the self-healing property provides reliable execution in order to support failures and assist automatic recovery techniques. This paper presents a knowledge-based approach for self-healing Composite Service (CS) applications. A CS is an application composed by a set of services interacting each other and invoked on the Web. Our approach is supported by Service Agents, which are in charge of the CS fault-tolerance execution control, making decisions about the selection of recovery and proactive strategies. Service Agents decisions are based on the information they have about the whole application, about themselves, and about what it is expected and what it is really happening at run-time. Hence, application knowledge for decision making comprises off-line precomputed global and local information, user QoS preferences, and propagated actual run-time information. Our approach is evaluated experimentally using a case study.