Visible to the public Biblio

Filters: Keyword is heuristic method  [Clear All Filters]
2020-03-09
Hermawan, Indra, Ma’sum, M. Anwar, Riskyana Dewi Intan, P, Jatmiko, Wisnu, Wiweko, Budi, Boediman, Alfred, Pradekso, Beno K..  2019.  Temporal feature and heuristics-based Noise Detection over Classical Machine Learning for ECG Signal Quality Assessment. 2019 International Workshop on Big Data and Information Security (IWBIS). :1–8.
This study proposes a method for ECG signals quality assessment (SQA) by using temporal feature, and heuristic rule. The ECG signal will be classified as acceptable or unacceptable. Seven types of noise were able to be detected by the prosed method. The noises are: FL, TVN, BW, AB, MA, PLI and AWGN. The proposed method is aimed to have better performance for SQA than classical machine learning method. The experiment is conducted by using 1000 instances ECG signal. The experiment result shows that db8 has the best performance with 0.86, 0.85 and 85.6% on lead-1 signal and 0.69, 0.79, and 74% on lead-5 signal for specificity, sensitivity and accuracy respectively. Compared to the classical machine learning, the proposed heuristic method has same accuracy but has 48% and 31% better specificity for lead-1 and lead-5. It means that the proposed method has far better ability to detect noise.
2017-05-30
Resende, Mauricio G.C., Ribeiro, Celso C..  2016.  Biased Ranom-Key Genetic Algorithms: An Advanced Tutorial. Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. :483–514.

A biased random-key genetic algorithm (BRKGA) is a general search procedure for finding optimal or near-optimal solutions to hard combinatorial optimization problems. It is derived from the random-key genetic algorithm of Bean (1994), differing in the way solutions are combined to produce offspring. BRKGAs have three key features that specialize genetic algorithms: A fixed chromosome encoding using a vector of N random keys or alleles over the real interval [0, 1), where the value of N depends on the instance of the optimization problem; A well-defined evolutionary process adopting parameterized uniform crossover to generate offspring and thus evolve the population; The introduction of new chromosomes called mutants in place of the mutation operator usually found in evolutionary algorithms. Such features simplify and standardize the procedure with a set of self-contained tasks from which only one is problem-dependent: that of decoding a chromosome, i.e. using, the keys to construct a solution to the underlying optimization problem, from which the objective function value or fitness can be computed. BRKGAs have the additional characteristic that, under a weak assumption, crossover always produces feasible offspring and, therefore, a repair or healing procedure to recover feasibility is not required in a BRKGA. In this tutorial we review the basic components of a BRKGA and introduce an Application Programming Interface (API) for quick implementations of BRKGA heuristics. We then apply the framework to a number of hard combinatorial optimization problems, including 2-D and 3-D packing problems, network design problems, routing problems, scheduling problems, and data mining. We conclude with a brief review of other domains where BRKGA heuristics have been applied.