Biblio
As a large number of sensor nodes as well as limited resources such as energy, memory, computing power, as well as bandwidth. Lossy linkages connect these nodes together. In early 2008,IETF working group looked into using current routing protocols for LLNs. Routing Over minimum power and Lossy networksROLL standardizes an IPv6 routing solution for LLNs because of the importance of LLNs in IoT.IPv6 Routing Protocol is based on the 6LoWPAN standard. RPL has matured significantly. The research community is becoming increasingly interested in it. The topology of RPL can be built in a variety of ways. It creates a topology in advance. Due to the lack of a complete review of RPL, in this paper a mobility management framework has been proposed along with experimental evaluation by applying parameters likePacket Delivery Ratio, throughput, end to end delay, consumed energy on the basis of the various parameters and its analysis done accurately. Finally, this paper can help academics better understand the RPL and engage in future research projects to improve it.
Metaheuristics include a wide range of optimization algorithms. Some of them are very well known and with proven value, as they solve successfully many examples of combinatorial NP-hard problems. Some examples of Metaheuristics are Genetic Algorithms (GA), Simulated Annealing (SA) or Ant Colony Optimization (ACO). Our company is devoted to making steel and is the biggest steelmaker in the world. Combining several industrial processes to produce 84.6 million tones (public official data of 2015) involves huge effort. Metaheuristics are applied to different scenarios inside our operations to optimize different areas: logistics, production scheduling or resource assignment, saving costs and helping to reach operational excellence, critical for our survival in a globalized world. Rather than obtaining the global optimal solution, the main interest of an industrial company is to have "good solutions", close to the optimal, but within a very short response time, and this latter requirement is the main difference with respect to the traditional research approach from the academic world. Production is continuous and it cannot be stopped or wait for calculations, in addition, reducing production speed implies decreasing productivity and making the facilities less competitive. Disruptions are common events, making rescheduling imperative while foremen wait for new instructions to operate. This position paper explains the problem of the time response in our industrial environment, the solutions we have investigated and some results already achieved.
A biased random-key genetic algorithm (BRKGA) is a general search procedure for finding optimal or near-optimal solutions to hard combinatorial optimization problems. It is derived from the random-key genetic algorithm of Bean (1994), differing in the way solutions are combined to produce offspring. BRKGAs have three key features that specialize genetic algorithms: A fixed chromosome encoding using a vector of N random keys or alleles over the real interval [0, 1), where the value of N depends on the instance of the optimization problem; A well-defined evolutionary process adopting parameterized uniform crossover to generate offspring and thus evolve the population; The introduction of new chromosomes called mutants in place of the mutation operator usually found in evolutionary algorithms. Such features simplify and standardize the procedure with a set of self-contained tasks from which only one is problem-dependent: that of decoding a chromosome, i.e. using, the keys to construct a solution to the underlying optimization problem, from which the objective function value or fitness can be computed. BRKGAs have the additional characteristic that, under a weak assumption, crossover always produces feasible offspring and, therefore, a repair or healing procedure to recover feasibility is not required in a BRKGA. In this tutorial we review the basic components of a BRKGA and introduce an Application Programming Interface (API) for quick implementations of BRKGA heuristics. We then apply the framework to a number of hard combinatorial optimization problems, including 2-D and 3-D packing problems, network design problems, routing problems, scheduling problems, and data mining. We conclude with a brief review of other domains where BRKGA heuristics have been applied.