Visible to the public Biblio

Filters: Keyword is Elliptic Curve Cryptosystem  [Clear All Filters]
2023-07-14
Yao, Jianbo, Yang, Chaoqiong, Zhang, Tao.  2022.  Safe and Effective Elliptic Curve Cryptography Algorithm against Power Analysis. 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA). :393–397.
Having high safety and effective computational property, the elliptic curve cryptosystem is very suitable for embedded mobile environment with resource constraints. Power attack is a powerful cipher attack method, it uses leaking information of cipher-chip in its operation process to attack chip cryptographic algorithms. In view of the situation that the power attack on the elliptic curve cryptosystem mainly concentrates on scalar multiplication operation an improved algorithm FWNAF based on RWNAF is proposed. This algorithm utilizes the fragments window technology further improves the utilization ratio of the storage resource and reduces the “jitter phenomenon” in system computing performance caused by the sharp change in system resources.
2021-07-27
Van Vu, Thi, Luong, The Dung, Hoang, Van Quan.  2020.  An Elliptic Curve-based Protocol for Privacy Preserving Frequency Computation in 2-Part Fully Distributed Setting. 2020 12th International Conference on Knowledge and Systems Engineering (KSE). :91–96.
Privacy-preserving frequency computation is critical to privacy-preserving data mining in 2-Part Fully Distributed Setting (such as association rule analysis, clustering, and classification analysis) and has been investigated in many researches. However, these solutions are based on the Elgamal Cryptosystem, making computation and communication efficiency low. Therefore, this paper proposes an improved protocol using an Elliptic Curve Cryptosystem. The theoretical and experimental analysis shows that the proposed method is effective in both computing and communication compared to other methods.
2020-06-26
Ostrowski, Łukasz, Marcinek, Krzysztof, Pleskacz, Witold A..  2019.  Implementation and Comparison of SPA and DPA Countermeasures for Elliptic Curve Point Multiplication. 2019 MIXDES - 26th International Conference "Mixed Design of Integrated Circuits and Systems". :227—230.

The core operation of all cryptosystems based on Elliptic Curve Cryptography is Elliptic Curve Point Multiplication. Depending on implementation it can be vulnerable to different Side Channel Analysis attacks exploiting information leakage, such as power consumption or execution time. Multiple countermeasures against these attacks have been developed over time, each having different impact on parameters of the cryptosystem. This paper summarizes popular countermeasures for simple and differential power analysis attacks on Elliptic Curve cryptosystems. Presented secure algorithms were implemented in Verilog hardware description language and synthesized to logic gates for power trace generation.

2020-01-27
Lee, Tian-Fu, Liu, Chuan-Ming.  2019.  An Efficient Date-Constraint Hierarchical Key Management Scheme with Fast Key Validation Checking for Mobile Agents in E-Medicine System. Proceedings of the Third International Conference on Medical and Health Informatics 2019. :172–177.

A hierarchical key management scheme for mobile agents in e-medicine system enables users, such as patients, doctors, nurses and health visitors, to conveniently and securely access a remote hierarchical medical database system via public networks. Efficient hierarchical key management schemes do not require heavy computations even if the hierarchical structure has too many levels and participants. Chen et al. recently developed a hierarchical key management scheme with date-constraint for mobile agents. The key management scheme of Chen et al. is based the Elliptic Curve Cryptosystem and allows each secret key to be partnered with a validity period by using one-way hash chains. However, the scheme of Chen et al. fails to execute correctly, violates authenticated key security, and requires hundreds of hash functional operations. This investigation discusses these limitations, and proposes an efficient date-constraint hierarchical key management scheme for mobile agents in e-medicine system, which provides a fast key validation and expiration check phase to rapidly check whether the secret keys are valid and time-expired or not. The proposed key management scheme not only provides more security properties and rapidly checks the validation of secret keys, but also reduces the computational cost..

2017-12-12
Fang, X., Yang, G., Wu, Y..  2017.  Research on the Underlying Method of Elliptic Curve Cryptography. 2017 4th International Conference on Information Science and Control Engineering (ICISCE). :639–643.

Elliptic Curve Cryptography (ECC) is a promising public key cryptography, probably takes the place of RSA. Not only ECC uses less memory, key pair generation and signing are considerably faster, but also ECC's key size is less than that of RSA while it achieves the same level of security. However, the magic behind RSA and its friends can be easily explained, is also widely understood, the foundations of ECC are still a mystery to most of us. This paper's aims are to provide detailed mathematical foundations of ECC, especially, the subgroup and its generator (also called base point) formed by one elliptic curve are researched as highlights, because they are very important for practical ECC implementation. The related algorithms and their implementation details are demonstrated, which is useful for the computing devices with restricted resource, such as embedded systems, mobile devices and IoT devices.

2017-06-05
Sudhakar, T., Natarajan, V., Kannathal, A..  2016.  Efficient and Secure Implementation of Elliptic Curve Scalar Multiplication Against Power Analysis Attacks. Proceedings of the International Conference on Informatics and Analytics. :70:1–70:5.

The Elliptic Curve Cryptosystems(ECC) are proved to be the cryptosystem of future generation because of its smaller key size and uncompromised security. It is well suited for applications running in resource-restricted devices such as smart cards. At present, there is no efficient algorithm or known sub-exponential algorithm to break ECC theoretically. However, a hardware implementation of ECC leaks secret key information due to power analysis attacks particularly differential power analysis attack(DPA). These attacks break the system with far less effort when compared to all other attacks based on algebraic weaknesses of the algorithms. There are many solutions to overcome the power analysis attack, but all the available solutions have their own advantages and disadvantages by compromising either its security or performance. In this paper, we present a secure and efficient algorithm to solve the elliptic curve scalar multiplication(ECSM) using initial points randomization and by delaying the point addition operation. The implementation results and performance analysis shows that the proposed algorithm is efficient and secure against power analysis attacks.