Visible to the public Biblio

Filters: Keyword is domain specific language  [Clear All Filters]
2020-04-03
Gerl, Armin, Becher, Stefan.  2019.  Policy-Based De-Identification Test Framework. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:356—357.
Protecting privacy of individuals is a basic right, which has to be considered in our data-centered society in which new technologies emerge rapidly. To preserve the privacy of individuals de-identifying technologies have been developed including pseudonymization, personal privacy anonymization, and privacy models. Each having several variations with different properties and contexts which poses the challenge for the proper selection and application of de-identification methods. We tackle this challenge proposing a policy-based de-identification test framework for a systematic approach to experimenting and evaluation of various combinations of methods and their interplay. Evaluation of the experimental results regarding performance and utility is considered within the framework. We propose a domain-specific language, expressing the required complex configuration options, including data-set, policy generator, and various de-identification methods.
2019-02-08
Johnson, Pontus, Lagerström, Robert, Ekstedt, Mathias.  2018.  A Meta Language for Threat Modeling and Attack Simulations. Proceedings of the 13th International Conference on Availability, Reliability and Security. :38:1-38:8.

Attack simulations may be used to assess the cyber security of systems. In such simulations, the steps taken by an attacker in order to compromise sensitive system assets are traced, and a time estimate may be computed from the initial step to the compromise of assets of interest. Attack graphs constitute a suitable formalism for the modeling of attack steps and their dependencies, allowing the subsequent simulation. To avoid the costly proposition of building new attack graphs for each system of a given type, domain-specific attack languages may be used. These languages codify the generic attack logic of the considered domain, thus facilitating the modeling, or instantiation, of a specific system in the domain. Examples of possible cyber security domains suitable for domain-specific attack languages are generic types such as cloud systems or embedded systems but may also be highly specialized kinds, e.g. Ubuntu installations; the objects of interest as well as the attack logic will differ significantly between such domains. In this paper, we present the Meta Attack Language (MAL), which may be used to design domain-specific attack languages such as the aforementioned. The MAL provides a formalism that allows the semi-automated generation as well as the efficient computation of very large attack graphs. We declare the formal background to MAL, define its syntax and semantics, exemplify its use with a small domain-specific language and instance model, and report on the computational performance.

2018-08-23
Matsuo, S..  2017.  How formal analysis and verification add security to blockchain-based systems. 2017 Formal Methods in Computer Aided Design (FMCAD). :1–4.

Blockchain is an integrated technology to ensure keeping record and process transactions with decentralized manner. It is thought as the foundation of future decentralized ecosystem, and collects much attention. However, the maturity of this technology including security of the fundamental protocol and its applications is not enough, thus we need more research on the security evaluation and verification of Blockchain technology This tutorial explains the current status of the security of this technology, its security layers and possibility of application of formal analysis and verification.

2017-06-27
Wilder, Nathan, Smith, Jared M., Mockus, Audris.  2016.  Exploring a Framework for Identity and Attribute Linking Across Heterogeneous Data Systems. Proceedings of the 2Nd International Workshop on BIG Data Software Engineering. :19–25.

Online-activity-generated digital traces provide opportunities for novel services and unique insights as demonstrated in, for example, research on mining software repositories. The inability to link these traces within and among systems, such as Twitter, GitHub, or Reddit, inhibit the advances in this area. Furthermore, no single approach to integrate data from these disparate sources is likely to work. We aim to design Foreseer, an extensible framework, to design and evaluate identity matching techniques for public, large, and low-accuracy operational data. Foreseer consists of three functionally independent components designed to address the issues of discovery and preparation, storage and representation, and analysis and linking of traces from disparate online sources. The framework includes a domain specific language for manipulating traces, generating insights, and building novel services. We have applied it in a pilot study of roughly 10TB of data from Twitter, Reddit, and StackExchange including roughly 6M distinct entities and, using basic matching techniques, found roughly 83,000 matches among these sources. We plan to add additional entity extraction and identification algorithms, data from other sources, and design tools for facilitating dynamic ingestion and tagging of incoming data on a more robust infrastructure using Apache Spark or another distributed processing framework. We will then evaluate the utility and effectiveness of the framework in applications ranging from identifying malicious contributors in software repositories to the evaluation of the utility of privacy preservation schemes.