Biblio
The search for alternative delivery modes to teaching has been one of the pressing concerns of numerous educational institutions. One key innovation to improve teaching and learning is e-learning which has undergone enormous improvements. From its focus on text-based environment, it has evolved into Virtual Learning Environments (VLEs) which provide more stimulating and immersive experiences among learners and educators. An example of VLEs is the virtual world which is an emerging educational platform among universities worldwide. One very interesting topic that can be taught using the virtual world is cybersecurity. Simulating cybersecurity in the virtual world may give a realistic experience to students which can be hardly achieved by classroom teaching. To date, there are quite a number of studies focused on cybersecurity awareness and cybersecurity behavior. But none has focused looking into the effect of digital simulation in the virtual world, as a new educational platform, in the cybersecurity attitude of the students. It is in this regard that this study has been conducted by designing simulation in the virtual world lessons that teaches the five aspects of cybersecurity namely; malware, phishing, social engineering, password usage and online scam, which are the most common cybersecurity issues. The study sought to examine the effect of this digital simulation design in the cybersecurity knowledge and attitude of the students. The result of the study ascertains that students exposed under simulation in the virtual world have a greater positive change in cybersecurity knowledge and attitude than their counterparts.
This project shows a procedure-training simulator targeted at the operation and maintenance of overland distribution power lines. This simulator is focused on workplace safety and risk assessment of common daily operations such as fuse replacement and power cut activities. The training system is implemented using VR goggles (Oculus Rift) and a mixture of a real scenario matched perfectly with its Virtual Reality counterpart. The real scenario is composed of a real "basket" and a stick - both of the equipment is the actual ones used in daily training. Both, equipment are tracked by high precision infrared cameras system (OptiTrack) providing a high degree of immersion and realism. In addition to tracking the scenario, the user is completely tracked: heads, shoulders, arms and hands are tracked. This tracking allows a perfect simulation of the participant's movements in the Virtual World. This allows precise evaluation of movements as well as ergonomics. The virtual scenario was carefully designed to accurately reproduce in a coherent way all relevant spatial, architectonic and natural features typical of the urban environment, reflecting the variety of challenges that real cities might impose on the activity. The system consists of two modules: the first module being Instructor Interface, which will help create and control different challenging scenarios and follow the student's reactions and behavior; and the second module is the simulator itself, which will be presented to the student through VR goggles. The training session can also be viewed on a projected screen by other students, enabling learning through observation of mistakes and successes of their peers, such as a martial arts dojo. The simulator features various risk scenarios such as: different climates - sun, rain and wind; different lighting conditions - day, night and artificial; different types of electrical structures; transformer fire and explosion; short-circuit and electric arc; defective equipment; many obstacles - trees, cars, windows, swarm of bees, etc.