Visible to the public Biblio

Filters: Keyword is pentesting  [Clear All Filters]
2023-03-31
Shahid, Jahanzeb, Muhammad, Zia, Iqbal, Zafar, Khan, Muhammad Sohaib, Amer, Yousef, Si, Weisheng.  2022.  SAT: Integrated Multi-agent Blackbox Security Assessment Tool using Machine Learning. 2022 2nd International Conference on Artificial Intelligence (ICAI). :105–111.
The widespread adoption of eCommerce, iBanking, and eGovernment institutions has resulted in an exponential rise in the use of web applications. Due to a large number of users, web applications have become a prime target of cybercriminals who want to steal Personally Identifiable Information (PII) and disrupt business activities. Hence, there is a dire need to audit the websites and ensure information security. In this regard, several web vulnerability scanners are employed for vulnerability assessment of web applications but attacks are still increasing day by day. Therefore, a considerable amount of research has been carried out to measure the effectiveness and limitations of the publicly available web scanners. It is identified that most of the publicly available scanners possess weaknesses and do not generate desired results. In this paper, the evaluation of publicly available web vulnerability scanners is performed against the top ten OWASP11OWASP® The Open Web Application Security Project (OWASP) is an online community that produces comprehensive articles, documentation, methodologies, and tools in the arena of web and mobile security. vulnerabilities and their performance is measured on the precision of their results. Based on these results, we proposed an Integrated Multi-Agent Blackbox Security Assessment Tool (SAT) for the security assessment of web applications. Research has proved that the vulnerabilities assessment results of the SAT are more extensive and accurate.
2021-04-27
Pozdniakov, K., Alonso, E., Stankovic, V., Tam, K., Jones, K..  2020.  Smart Security Audit: Reinforcement Learning with a Deep Neural Network Approximator. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.
A significant challenge in modern computer security is the growing skill gap as intruder capabilities increase, making it necessary to begin automating elements of penetration testing so analysts can contend with the growing number of cyber threats. In this paper, we attempt to assist human analysts by automating a single host penetration attack. To do so, a smart agent performs different attack sequences to find vulnerabilities in a target system. As it does so, it accumulates knowledge, learns new attack sequences and improves its own internal penetration testing logic. As a result, this agent (AgentPen for simplicity) is able to successfully penetrate hosts it has never interacted with before. A computer security administrator using this tool would receive a comprehensive, automated sequence of actions leading to a security breach, highlighting potential vulnerabilities, and reducing the amount of menial tasks a typical penetration tester would need to execute. To achieve autonomy, we apply an unsupervised machine learning algorithm, Q-learning, with an approximator that incorporates a deep neural network architecture. The security audit itself is modelled as a Markov Decision Process in order to test a number of decision-making strategies and compare their convergence to optimality. A series of experimental results is presented to show how this approach can be effectively used to automate penetration testing using a scalable, i.e. not exhaustive, and adaptive approach.
2017-06-27
Obermaier, Johannes, Hutle, Martin.  2016.  Analyzing the Security and Privacy of Cloud-based Video Surveillance Systems. Proceedings of the 2Nd ACM International Workshop on IoT Privacy, Trust, and Security. :22–28.

In the area of the Internet of Things, cloud-based camera surveillance systems are ubiquitously available for industrial and private environments. However, the sensitive nature of the surveillance use case imposes high requirements on privacy/confidentiality, authenticity, and availability of such systems. In this work, we investigate how currently available mass-market camera systems comply with these requirements. Considering two attacker models, we test the cameras for weaknesses and analyze for their implications. We reverse-engineered the security implementation and discovered several vulnerabilities in every tested system. These weaknesses impair the users' privacy and, as a consequence, may also damage the camera system manufacturer's reputation. We demonstrate how an attacker can exploit these vulnerabilities to blackmail users and companies by denial-of-service attacks, injecting forged video streams, and by eavesdropping private video data - even without physical access to the device. Our analysis shows that current systems lack in practice the necessary care when implementing security for IoT devices.