Biblio
With the rapid development of the Internet of vehicles, there is a huge amount of multimedia data becoming a hidden trouble in the Internet of Things. Therefore, it is necessary to process and store them in real time as a way of big data curation. In this paper, a method of real-time processing and storage based on CDN in vehicle monitoring system is proposed. The MPEG-DASH standard is used to process the multimedia data by dividing them into MPD files and media segments. A real-time monitoring system of vehicle on the basis of the method introduced is designed and implemented.
Nowadays, video streaming over HTTP is one of the most dominant Internet applications, using adaptive video techniques. Network assisted approaches have been proposed and are being standardized in order to provide high QoE for the end-users of such applications. SAND is a recent MPEG standard where DASH Aware Network Elements (DANEs) are introduced for this purpose. As web-caches are one of the main components of the SAND architecture, the location and the connectivity of these web-caches plays an important role in the user's QoE. The nature of SAND and DANE provides a good foundation for software controlled virtualized DASH environments, and in this paper, we propose a cache location algorithm and a cache migration algorithm for virtualized SAND deployments. The optimal locations for the virtualized DANEs is determined by an SDN controller and migrates it based on gathered statistics. The performance of the resulting system shows that, when SDN and NFV technologies are leveraged in such systems, software controlled virtualized approaches can provide an increase in QoE.
In most adaptive video streaming systems adaptation decisions rely solely on the available network resources. As the content of a video has a large influence on the perception of quality our belief is that this is not sufficient. Thus, we have proposed a support service for content-aware video adaptation on mobile devices: Video Adaptation Service (VAS). Based on the content of a streamed video, the adaptation process is improved by setting a target quality level for a session based on an objective video quality metric. In this work, we demonstrate VAS and its advantages of a reduced data traffic by only streaming the lowest video representation which is necessary to reach a desired quality. By leveraging the content properties of a video stream, the system is able to keep a stable video quality and at the same time reduce the network load.