Biblio
Mobile Ad hoc Network (MANET) is the collection of mobile devices which could change the locations and configure themselves without a centralized base point. Mobile Ad hoc Networks are vulnerable to attacks due to its dynamic infrastructure. The routing attacks are one among the possible attacks that causes damage to MANET. This paper gives a new method of risk aware response technique which is combined version the Dijkstra's shortest path algorithm and Destination Sequenced Distance Vector (DSDV) algorithm. This can reduce black hole attacks. Dijkstra's algorithm finds the shortest path from the single source to the destination when the edges have positive weights. The DSDV is an improved version of the conventional technique by adding the sequence number and next hop address in each routing table.
In this research paper, we describe an algorithm that could be implemented on an intrusion response system (IRS) designed specifically for mobile ad hoc networks (MANET). Designed to supplement a MANET's hierarchical intrusion detection system (IDS), this IRS and its associated algorithm would be implemented on the root node operating in such an IRS, and would rely on the optimized link state routing protocol (OLSR) to determine facts about the topology of the network, and use that determination to facilitate responding to network intrusions and attacks. The algorithm operates in a query-response mode, where the IRS function of the IDS root node queries the implemented algorithm, and the algorithm returns its response, formatted as an unordered list of nodes satisfying the query.
In this research paper, we describe an algorithm that could be implemented on an intrusion response system (IRS) designed specifically for mobile ad hoc networks (MANET). Designed to supplement a MANET's hierarchical intrusion detection system (IDS), this IRS and its associated algorithm would be implemented on the root node operating in such an IRS, and would rely on the optimized link state routing protocol (OLSR) to determine facts about the topology of the network, and use that determination to facilitate responding to network intrusions and attacks. The algorithm operates in a query-response mode, where the IRS function of the IDS root node queries the implemented algorithm, and the algorithm returns its response, formatted as an unordered list of nodes satisfying the query.