Visible to the public Biblio

Filters: Keyword is Intrusion Response  [Clear All Filters]
2022-12-09
Tunc, Cihan, Hariri, Salim.  2022.  Self-Protection for Unmanned Autonomous Vehicles (SP-UAV): Design Overview and Evaluation. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :128—132.
Unmanned autonomous vehicles (UAVs) have been receiving high interest lately due to their wide range of potential deployment options that can touch all aspects of our life and economy, such as transportation, delivery, healthcare, surveillance. However, UAVs have also introduced many new vulnerabilities and attack surfaces that can be exploited by cyberattacks. Due to their complexity, autonomous operations, and being relatively new technologies, cyberattacks can be persistent, complex, and can propagate rapidly to severely impact the main UAV functions such as mission management, support, processing operations, maneuver operations, situation awareness. Furthermore, such cyberattacks can also propagate among other UAVs or even their control stations and may even endanger human life. Hence, we need self-protection techniques with an autonomic management approach. In this paper we present our approach to implement self-protection of UAVs (SP-UAV) such that they can continue their critical functions despite cyberattacks targeting UAV operations or services. We present our design approach and implementation using a unified management interface based on three ports: Configuration, observer, and control ports. We have implemented the SP-UAV using C and demonstrated using different attack scenarios how we can apply autonomic responses without human involvement to tolerate cyberattacks against the UAV operations.
2022-01-25
Chouhan, Pushpinder Kaur, Chen, Liming, Hussain, Tazar, Beard, Alfie.  2021.  A Situation Calculus based approach to Cognitive Modelling for Responding to IoT Cyberattacks. 2021 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI). :219—225.
Both the sophistication and scale of cyberattacks are increasing, revealing the extent of risks at which critical infrastructure and other information and communication systems are exposed. Furthermore, the introduction of IoT devices in a number of different applications, ranging from home automation to the monitoring of critical infrastructure, has created an even more complicated cybersecurity landscape. A large amount of research has been done on detecting these attacks in real time, however mitigation is left to security experts, which is time consuming and may have economic consequences. In addition, there is no public data available for action selection that could enable the use of the latest techniques in machine learning or deep learning for this area. Currently, most systems deploy a rule-based response selection methodology for mitigating detected attacks. In this paper, we introduce a situation calculus-based approach to automated response for IoT cyberattacks. The approach offers explicit semantic-rich cognitive modeling of attacks, effects and actions and supports situation inference for timely and accurate responses. We demonstrate the effectiveness of our approach for modelling and responding to cyberattacks by implementing a use case in a real-world IoT scenario.
2020-08-28
Aravindhar, D. John, Gino Sophia, S. G., Krishnan, Padmaveni, Kumar, D. Praveen.  2019.  Minimization of Black hole Attacks in AdHoc Networks using Risk Aware Response Mechanism. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :1391—1394.

Mobile Ad hoc Network (MANET) is the collection of mobile devices which could change the locations and configure themselves without a centralized base point. Mobile Ad hoc Networks are vulnerable to attacks due to its dynamic infrastructure. The routing attacks are one among the possible attacks that causes damage to MANET. This paper gives a new method of risk aware response technique which is combined version the Dijkstra's shortest path algorithm and Destination Sequenced Distance Vector (DSDV) algorithm. This can reduce black hole attacks. Dijkstra's algorithm finds the shortest path from the single source to the destination when the edges have positive weights. The DSDV is an improved version of the conventional technique by adding the sequence number and next hop address in each routing table.

2017-09-27
Kaur, Jagjot, Lindskog, Dale.  2016.  An Algorithm to Facilitate Intrusion Response in Mobile Ad Hoc Networks. Proceedings of the 9th International Conference on Security of Information and Networks. :124–128.

In this research paper, we describe an algorithm that could be implemented on an intrusion response system (IRS) designed specifically for mobile ad hoc networks (MANET). Designed to supplement a MANET's hierarchical intrusion detection system (IDS), this IRS and its associated algorithm would be implemented on the root node operating in such an IRS, and would rely on the optimized link state routing protocol (OLSR) to determine facts about the topology of the network, and use that determination to facilitate responding to network intrusions and attacks. The algorithm operates in a query-response mode, where the IRS function of the IDS root node queries the implemented algorithm, and the algorithm returns its response, formatted as an unordered list of nodes satisfying the query.

2017-08-02
Kaur, Jagjot, Lindskog, Dale.  2016.  An Algorithm to Facilitate Intrusion Response in Mobile Ad Hoc Networks. Proceedings of the 9th International Conference on Security of Information and Networks. :124–128.

In this research paper, we describe an algorithm that could be implemented on an intrusion response system (IRS) designed specifically for mobile ad hoc networks (MANET). Designed to supplement a MANET's hierarchical intrusion detection system (IDS), this IRS and its associated algorithm would be implemented on the root node operating in such an IRS, and would rely on the optimized link state routing protocol (OLSR) to determine facts about the topology of the network, and use that determination to facilitate responding to network intrusions and attacks. The algorithm operates in a query-response mode, where the IRS function of the IDS root node queries the implemented algorithm, and the algorithm returns its response, formatted as an unordered list of nodes satisfying the query.