Visible to the public Biblio

Filters: Keyword is reconstruction  [Clear All Filters]
2023-04-28
Nema, Tesu, Parsai, M. P..  2022.  Reconstruction of Incomplete Image by Radial Sampling. 2022 International Conference on Computer Communication and Informatics (ICCCI). :1–4.
Signals get sampled using Nyquist rate in conventional sampling method, but in compressive sensing the signals sampled below Nyquist rate by randomly taking the signal projections and reconstructing it out of very few estimations. But in case of recovering the image by utilizing compressive measurements with the help of multi-resolution grid where the image has certain region of interest (RoI) that is more important than the rest, it is not efficient. The conventional Cartesian sampling cannot give good result in motion image sensing recovery and is limited to stationary image sensing process. The proposed work gives improved results by using Radial sampling (a type of compression sensing). This paper discusses the approach of Radial sampling along with the application of Sparse Fourier Transform algorithms that helps in reducing acquisition cost and input/output overhead.
ISSN: 2329-7190
2022-07-01
Yudin, Oleksandr, Artemov, Volodymyr, Krasnorutsky, Andrii, Barannik, Vladimir, Tupitsya, Ivan, Pris, Gennady.  2021.  Creating a Mathematical Model for Estimating the Impact of Errors in the Process of Reconstruction of Non-Uniform Code Structures on the Quality of Recoverable Video Images. 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT). :40—45.
Existing compression coding technologies are investigated using a statistical approach. The fundamental strategies used in the process of statistical coding of video information data are analyzed. Factors that have a significant impact on the reliability and efficiency of video delivery in the process of statistical coding are analyzed. A model for estimating the impact of errors in the process of reconstruction of uneven code structures on the quality of recoverable video images is being developed.The influence of errors that occur in data transmission channels on the reliability of the reconstructed video image is investigated.
2019-12-10
Huang, Lilian, Zhu, Zhonghang.  2018.  Compressive Sensing Image Reconstruction Using Super-Resolution Convolutional Neural Network. Proceedings of the 2Nd International Conference on Digital Signal Processing. :80-83.

Compressed sensing (CS) can recover a signal that is sparse in certain representation and sample at the rate far below the Nyquist rate. But limited to the accuracy of atomic matching of traditional reconstruction algorithm, CS is difficult to reconstruct the initial signal with high resolution. Meanwhile, scholar found that trained neural network have a strong ability in settling such inverse problems. Thus, we propose a Super-Resolution Convolutional Neural Network (SRCNN) that consists of three convolutional layers. Every layer has a fixed number of kernels and has their own specific function. The process is implemented using classical compressed sensing algorithm to process the input image, afterwards, the output images are coded via SRCNN. We achieve higher resolution image by using the SRCNN algorithm proposed. The simulation results show that the proposed method helps improve PSNR value and promote visual effect.

2015-04-30
Liu, Yuanyuan, Cheng, Jianping, Zhang, Li, Xing, Yuxiang, Chen, Zhiqiang, Zheng, Peng.  2014.  A low-cost dual energy CT system with sparse data. Tsinghua Science and Technology. 19:184-194.

Dual Energy CT (DECT) has recently gained significant research interest owing to its ability to discriminate materials, and hence is widely applied in the field of nuclear safety and security inspection. With the current technological developments, DECT can be typically realized by using two sets of detectors, one for detecting lower energy X-rays and another for detecting higher energy X-rays. This makes the imaging system expensive, limiting its practical implementation. In 2009, our group performed a preliminary study on a new low-cost system design, using only a complete data set for lower energy level and a sparse data set for the higher energy level. This could significantly reduce the cost of the system, as it contained much smaller number of detector elements. Reconstruction method is the key point of this system. In the present study, we further validated this system and proposed a robust method, involving three main steps: (1) estimation of the missing data iteratively with TV constraints; (2) use the reconstruction from the complete lower energy CT data set to form an initial estimation of the projection data for higher energy level; (3) use ordered views to accelerate the computation. Numerical simulations with different number of detector elements have also been examined. The results obtained in this study demonstrate that 1 + 14% CT data is sufficient enough to provide a rather good reconstruction of both the effective atomic number and electron density distributions of the scanned object, instead of 2 sets CT data.