Biblio
With the wide application of modern robots, more concerns have been raised on security and privacy of robotic systems and applications. Although the Robot Operating System (ROS) is commonly used on different robots, there have been few work considering the security aspects of ROS. As ROS does not employ even the basic permission control mechanism, applications can access any resources without limitation, which could result in equipment damage, harm to human, as well as privacy leakage. In this paper we propose an access control mechanism for ROS based on an extended policy-based access control (PBAC) model. Specifically, we extend ROS to add an additional node dedicated for access control so that it can provide user identity and permission management services. The proposed mechanism also allows the administrator to revoke a permission dynamically. We implemented the proposed method in ROS and demonstrated its applicability and performance through several case studies.
Malware variants exhibit polymorphic attacks due to the tremendous growth of the present technologies. For instance, ransomware, an astonishingly growing set of monetary-gain threats in the recent years, is peculiarized as one of the most treacherous cyberthreats against innocent individuals and businesses by locking their devices and/or encrypting their files. Many proposed attempts have been introduced by cybersecurity researchers aiming at mitigating the epidemic of the ransomware attacks. However, this type of malware is kept refined by utilizing new evasion techniques, such as sophisticated codes, dynamic payloads, and anti-emulation techniques, in order to survive against detection systems. This paper introduces RanDetector, a new automated and lightweight system for detecting ransomware applications in Android platform based on their behavior. In particular, this detection system investigates the appearance of some information that is related to ransomware operations in an inspected application before integrating some supervised machine learning models to classify the application. RanDetector is evaluated and tested on a dataset of more 450 applications, including benign and ransomware. Hence, RanDetector has successfully achieved more that 97.62% detection rate with nearly zero false positive.
We live in the era of mobile computing. Mobile devices have more sensors and more capabilities than desktop computers. For any computing device that contains sensitive information and accesses the Internet, security is a major concern for both enterprises and end-users. Of the mobile devices commonly in The emphasis of this research focuses on to the ways in which the popular iOS and Android platforms handle permissions in an attempt to discern if there are any identifiable trends on either platform w.r.t. applications being over- or underprivileged.