Visible to the public Biblio

Filters: Keyword is Self-Organizing Map  [Clear All Filters]
2021-03-22
Hikawa, H..  2020.  Nested Pipeline Hardware Self-Organizing Map for High Dimensional Vectors. 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS). :1–4.
This paper proposes a hardware Self-Organizing Map (SOM) for high dimensional vectors. The proposed SOM is based on nested architecture with pipeline processing. Due to homogeneous modular structure, the nested architecture provides high expandability. The original nested SOM was designed to handle low-dimensional vectors with fully parallel computation, and it yielded very high performance. In this paper, the architecture is extended to handle much higher dimensional vectors by using sequential computation, which requires multiple clocks to process a single vector. To increase the performance, the proposed architecture employs pipeline computation, in which search of winner neuron and weight vector update are carried out simultaneously. Operable clock frequency for the system was 60 MHz, and its throughput reached 15012 million connection updates per second (MCUPS).
2021-03-01
Tan, R., Khan, N., Guan, L..  2020.  Locality Guided Neural Networks for Explainable Artificial Intelligence. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.
In current deep network architectures, deeper layers in networks tend to contain hundreds of independent neurons which makes it hard for humans to understand how they interact with each other. By organizing the neurons by correlation, humans can observe how clusters of neighbouring neurons interact with each other. In this paper, we propose a novel algorithm for back propagation, called Locality Guided Neural Network (LGNN) for training networks that preserves locality between neighbouring neurons within each layer of a deep network. Heavily motivated by Self-Organizing Map (SOM), the goal is to enforce a local topology on each layer of a deep network such that neighbouring neurons are highly correlated with each other. This method contributes to the domain of Explainable Artificial Intelligence (XAI), which aims to alleviate the black-box nature of current AI methods and make them understandable by humans. Our method aims to achieve XAI in deep learning without changing the structure of current models nor requiring any post processing. This paper focuses on Convolutional Neural Networks (CNNs), but can theoretically be applied to any type of deep learning architecture. In our experiments, we train various VGG and Wide ResNet (WRN) networks for image classification on CIFAR100. In depth analyses presenting both qualitative and quantitative results demonstrate that our method is capable of enforcing a topology on each layer while achieving a small increase in classification accuracy.
2017-12-28
Boucher, A., Badri, M..  2017.  Predicting Fault-Prone Classes in Object-Oriented Software: An Adaptation of an Unsupervised Hybrid SOM Algorithm. 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS). :306–317.

Many fault-proneness prediction models have been proposed in literature to identify fault-prone code in software systems. Most of the approaches use fault data history and supervised learning algorithms to build these models. However, since fault data history is not always available, some approaches also suggest using semi-supervised or unsupervised fault-proneness prediction models. The HySOM model, proposed in literature, uses function-level source code metrics to predict fault-prone functions in software systems, without using any fault data. In this paper, we adapt the HySOM approach for object-oriented software systems to predict fault-prone code at class-level granularity using object-oriented source code metrics. This adaptation makes it easier to prioritize the efforts of the testing team as unit tests are often written for classes in object-oriented software systems, and not for methods. Our adaptation also generalizes one main element of the HySOM model, which is the calculation of the source code metrics threshold values. We conducted an empirical study using 12 public datasets. Results show that the adaptation of the HySOM model for class-level fault-proneness prediction improves the consistency and the performance of the model. We additionally compared the performance of the adapted model to supervised approaches based on the Naive Bayes Network, ANN and Random Forest algorithms.

2017-08-02
Nohara, Takumi, Uda, Ryuya.  2016.  Personal Identification by Flick Input Using Self-Organizing Maps with Acceleration Sensor and Gyroscope. Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication. :58:1–58:6.

Screen lock is vulnerable against shoulder surfing since password, personal identification numbers (PIN) and pattern can be seen when smart phones are used in public space although important information is stored in them and they are often used in public space. In this paper, we propose a new method in which passwords are combined with biometrics authentication which cannot be seen by shoulder surfing and difficult to be guessed by brute-force attacks. In our method, the motion of a finger is measured by sensors when a user controls a mobile terminal, and the motion which includes characteristics of the user is registered. In our method, registered characteristics are classified by learning with self-organizing maps. Users are identified by referring the self-organizing maps when they input passwords on mobile terminals.