Biblio
Technology specific expert knowledge is often required to analyse security configurations and determine potential vulnerabilities, but it becomes difficult when it is a new technology such as Fog computing. Furthermore, additional knowledge is also required regarding how the security configuration has been constructed in respect to an organisation's security policies. Traditionally, organisations will often manage their access control permissions relative to their employees needs, posing challenges to administrators. This problem is even exacerbated in Fog computing systems where security configurations are implemented on a large amount of devices at the edges of Internet, and the administrators are required to retain adequate knowledge on how to perform complex administrative tasks. In this paper, a novel approach of translating object-based security configurations in to a graph model is presented. A technique is then developed to autonomously identify vulnerabilities and perform security auditing of large systems without the need for expert knowledge. Throughout the paper, access control configuration data is used as a case study, and empirical analysis is performed on synthetically generated access control permissions.
JoanAudit is a static analysis tool to assist security auditors in auditing Web applications and Web services for common injection vulnerabilities during software development. It automatically identifies parts of the program code that are relevant for security and generates an HTML report to guide security auditors audit the source code in a scalable way. JoanAudit is configured with various security-sensitive input sources and sinks relevant to injection vulnerabilities and standard sanitization procedures that prevent these vulnerabilities. It can also automatically fix some cases of vulnerabilities in source code — cases where inputs are directly used in sinks without any form of sanitization — by using standard sanitization procedures. Our evaluation shows that by using JoanAudit, security auditors are required to inspect only 1% of the total code for auditing common injection vulnerabilities. The screen-cast demo is available at https://github.com/julianthome/joanaudit.
Cloud service providers typically adopt the multi-tenancy model to optimize resources usage and achieve the promised cost-effectiveness. Sharing resources between different tenants and the underlying complex technology increase the necessity of transparency and accountability. In this regard, auditing security compliance of the provider's infrastructure against standards, regulations and customers' policies takes on an increasing importance in the cloud to boost the trust between the stakeholders. However, virtualization and scalability make compliance verification challenging. In this work, we propose an automated framework that allows auditing the cloud infrastructure from the structural point of view while focusing on virtualization-related security properties and consistency between multiple control layers. Furthermore, to show the feasibility of our approach, we integrate our auditing system into OpenStack, one of the most used cloud infrastructure management systems. To show the scalability and validity of our framework, we present our experimental results on assessing several properties related to auditing inter-layer consistency, virtual machines co-residence, and virtual resources isolation.
Cloud service providers typically adopt the multi-tenancy model to optimize resources usage and achieve the promised cost-effectiveness. Sharing resources between different tenants and the underlying complex technology increase the necessity of transparency and accountability. In this regard, auditing security compliance of the provider's infrastructure against standards, regulations and customers' policies takes on an increasing importance in the cloud to boost the trust between the stakeholders. However, virtualization and scalability make compliance verification challenging. In this work, we propose an automated framework that allows auditing the cloud infrastructure from the structural point of view while focusing on virtualization-related security properties and consistency between multiple control layers. Furthermore, to show the feasibility of our approach, we integrate our auditing system into OpenStack, one of the most used cloud infrastructure management systems. To show the scalability and validity of our framework, we present our experimental results on assessing several properties related to auditing inter-layer consistency, virtual machines co-residence, and virtual resources isolation.